MAAP #155: Deforestation Hotspots in the Venezuelan Amazon

Amazon Base Map. Forest Carbon Flux across the Amazon, 2001-2020. Data: Harris et al 2021. Analysis: Amazon Conservation/MAAP.

We present here the first report of a series focused on the Venezuelan Amazon, which covers over 47 million hectares of the northern section of the Amazon biome (above western Brazil).

As the Amazon Base Map indicates, Venezuela is a key part to the remaining core Amazon that is still functioning as a critical carbon sink, making it an important piece to long-term conservation strategies.

However, deforestation has been increasing in recent years (see graph in Base Map), indicating escalating threats.

Specifically, there is a clear trend of increasing primary forest loss since 2015, including a recent spike in 2019.

We estimate the loss of over 140,000 hectares (345,000 acres) over the past four years, accounting for 1.6% of the total loss across the Amazon during that time period.

Below, we investigate the major hotspots and drivers of deforestation currently in the Venezuelan Amazon.

 

 

Venezuela Base Map. Hotspots of primary forest loss across the Venezuelan Amazon (2017-2020). UMD/GLAD, MAAP.

The Venezuela base map shows the major hotspots of primary forest loss across the Venezuelan Amazon over the past four years (2017-2020).

Note that most hotspots are within the Orinoco Mining Arc, a large area over 11 million hectares created by a controversial presidential decree in 2016 designed to promote mining (SOSOrinoco 2021), as well as within and around the extensive network of protected areas.

These protected areas cover 43% (20 million hectares) of the Venezuelan Amazon and accounted for around 30% of total forest loss. The most impacted areas in recent years are Caura, Canaima, and Yapacana National Parks (over 22,000 hectares combined).

We zoomed in on these hotspots and found that mining, fires, and agriculture (including cattle pasture) are the three primary deforestation drivers across the Venezuelan Amazon. There may be complex interactions between these drivers, such as mining centers leading to fires and agricultural expansion to support the new mining population.

It is worth noting that Venezuela joins Peru, Brazil, and Suriname as countries where mining is now documented to be actively driving major deforestation of primary forest.

We also note that, as in the rest of the Amazon, virtually all fires are caused by humans (that is, not natural events) and most are likely linked to preparing land for agricultural activities. During drier periods, these fires may escape, causing larger forest fires.

Below, we illustrate these drivers in a series of high-resolution (3 meters) and very high-resolution (0.5 meters) images.

High-resolution Zooms

Mining

Zoom A. Yapacana National Park

Yapacana National Park, which is a unique mosaic of natural savannas and forest, is currently experiencing deforestation impacts from active mining operations. We show two examples of recent mining in the Cerro Yapacana mining sector, featuring very-high resolution imagery from late 2021 (see Zooms A1 and A2). These two areas have lost over 550 hectares since the early 2000s.

Zoom A1. Mining deforestation in Yapacana National Park. Data: Planet/Skysat.
Zoom A2. Mining deforestation in Yapacana National Park. Data: Planet/Skysat.

 

Zoom B. Caura National Park

Caura National Park is also experiencing active mining activity. Below are two examples of recent mining activity, featuring very-high resolution imagery from early 2022 (see Zooms B1 and B2).

 

Zoom B1. Mining deforestation in Caura National Park. Data: Planet/Skysat.

 

Zoom B2. Mining deforestation in Caura National Park. Data: Planet/Skysat.

Zoom C. Canaima National Park

The following image shows the recent expansion of mining deforestation in Canaima National Park between 2017 (left panel) and 2020 (right panel).

Zoom C. Mining deforestation in Canaima National Park. Data: Planet/Skysat.

Zoom D: Orinoco Mining Arc

To the north of these protected areas, there is both industrial and river-based mining deforestation in the Orinoco Mining Arc. Zoom D shows an example of major river-based mining deforestation (over 1,800 hectares) between 2017 and 2020, plus a very-high resolution imagery from late 2021.

Zoom D. Mining deforestation in the Orinoco Mining Arc. Data: Planet.

Agriculture

Zoom E shown an example of agricultural expansion (likely cattle ranching) in the northeastern section of the Orinoco Mining Arc. We estimate the forest loss shown in the panels between 2017 and 2020 is over 400 hectares.

Zoom E. Agricultuire deforestation in the Orinoco Mining Arc. Data: Planet.

Fire

Finally, Zooms F and G show recent examples of major fires impacts. Zoom F is an area that experienced major fires in 2019 within and around Canaima National Park. We estimate the forest loss shown in the panels between 2017 and 2020 is 1,175 hectares.

Zoom F. Major fires in 2019 within and around Canaima National Park. Data: Planet.

Zoom G is an area that experienced major fires in 2020 in the near mining sites in the western section of the Orinoco Mining Arc. We estimate the forest loss shown in the panels between 2017 and 2020 is 1,128 hectares.

Zoom G. Major fires in 2020 in the Orinoco Mining Arc. Data: Planet.

Methodology

For a study area with maximum inclusion, for the Venezuelan Amazon we used the wider biogeographic boundary (as defined by RAISG) rather than the strict Amazon watershed boundary (which actually only includes a small portion of Venezuela).

We obtained data for the Orinoco Mining Arc (Arco Minero del Orinoco) and protected areas from the organization SOSOrinoco. The latter dataset contains Areas Under Special Administration Regime (Áreas Bajo Régimen de Administración Especial – ABRAE), which meet the IUCN international definition of protected areas: national parks, natural monuments, wildlife refuges, reserves and sanctuaries.

We used “primary forest loss” data as our proxy for 2002-2020 annual deforestation. This 30-meter resolution (based on Landsat) data is produced by the University of Maryland and presented by Global Forest Watch. Note that it includes forest loss from fires and natural causes. 2021 early warning alert data is also from University of Maryland.

To identify primary forest loss hotspots, we conducted a kernel density estimate. This type of analysis calculates the magnitude per unit area of a particular phenomenon, in this case forest cover loss. We conducted this analysis using the Kernel Density tool from Spatial Analyst Tool Box of ArcGIS.

Finally, we investigated the major hotspots with both high resolution (3 meters) and very high resolution (0.5 meters) satellite imagery from the company Planet to identify causes (drivers).

References

SOSOrinoco. 2021. Deforestation & Changes in Vegetation &  Land Use Cover within the so-called Orinoco Mining Arc between 2000-2020.

Acknowledgements

We thank the organization SOSOrinoco for important information and comments related to this report.

Citation

Finer M, Mamani N (2022) Deforestation Hotspots in the Venezuelan Amazon. MAAP: 155.

MAAP #156: Intense Mining Activity in Yapacana National Park (Venezuelan Amazon)

Base Map: Mining areas in Yapacana National Park. Data: SOS Orinoco, ACA/MAAP, Planet.

We present the second report in our series focused on the Venezuelan Amazon.

The first (MAAP #155) documented the loss of over 140,000 hectares (345,000 acres) of primary forest over the past four years. We also zoomed in on the major hotspots, showing that mining is one of the primary deforestation drivers, including in protected areas.

Here we focus on a key protected area, Yapacana National Park.

The park, created in 1978, is a key biogeographical site, with diverse ecosystems (including white sand savannahs), high endemism and biodiversity, and unique Guiana Shield outcrops. Illegal mining started in the park in the 1980s and started to surge in the 2000s (see SOS Orinoco 2020 for details on the complex socio-political issues).

We show Yapacana National Park is currently experiencing intense illegal mining activity.

Specifically, we carried out a detailed estimate of current mining camps and machinery, based on recent and very high-resolution Skysat satellite imagery from Planet (0.5 meters).

We found over 8,000 mining data points (over 4,100 camps and 3,800 pieces of machinery), indicating that Yapacana National Park may currently be the most impacted site in the Amazon (replacing the case La Pampa in the buffer zone of Tambopata National Reserve, in the southern Peruvian Amazon), based on density of mining-related activity.

The goal of this report is to precisely inform the international community about the magnitude of the crisis in Yapacana National Park in hopes of an eventual solution.

Intense Mining in Yapacana National Park

The Base Map (see above) shows the major mining sectors in Yapacana National Park and our Skysat coverage over the recent time period of December 2021 to March 2022 (vertical dark green polygons). In this area, we recorded an astounding 8,214 mining data points (4,167 camps and 3,884 pieces of machinery). This finding is consistent with previous estimates that there are over 2,000 illegal miners operating in the park (and even indicates that this is an underestimate).

The Letters A-C correspond to the zoom images below.


Zoom A: Cerro Yapacana (north)

Zoom A centers on a major mining area in the Cerro Yapacana sector that experienced the deforestation of 360 hectares since the early 2000s, including a spike starting in 2016. It shows a very high-resolution Skysat image from early December 2021, with and without the mining data (left and right panel, respectively). Note how the second image brings out previously “invisible” elements within the overall mining area: 945 mining data points (413 camps and 532 equipment).  Further below, Zooms A1 and A2 further illustrate this point.

Zoom A. Mining activity in the Cerro Yapacana northern sector without (left panel) and with (right panel) the mining data. Data: ACA/MAAP, Planet (Skysat).
Zoom A1. Mining activity in the Cerro Yapacana sector without (left panel) and with (right panel) the mining data. Data: ACA/MAAP, Planet (Skysat).
Zoom A2. Mining activity in the Cerro Yapacana sector without (left panel) and with (right panel) the mining data. Data: ACA/MAAP, Planet (Skysat).

Zoom B: Cerro Yapacana (south)

Zoom B centers on a major mining area in the Cerro Yapacana sector that experienced the deforestation of 175 hectares since the early 2000s, including a spike starting in 2014. It shows a very high-resolution Skysat image from early December 2021, with and without the mining data (left and right panel, respectively). Note how the second image brings out previously “invisible” elements within the overall mining area: 1,175 mining data points (667 camps and 508 equipment). Again, note how the second image brings out previously “invisible” elements within the overall mining area. Zooms B1 and B2 further illustrate this point.

Zoom B. Mining activity in the Cerro Yapacana southern sector without (left panel) and with (right panel) the mining data. Data: ACA/MAAP, Planet (Skysat).
Zoom B1. Mining activity in the Cerro Yapacana southern sector without (left panel) and with (right panel) the mining data. Data: ACA/MAAP, Planet (Skysat).
Zoom B2. Mining activity in the Cerro Yapacana southern sector without (left panel) and with (right panel) the mining data. Data: ACA/MAAP, Planet (Skysat).

Zoom C: Cerro Moyo

Lastly, Zoom C centers on a major mining area in the Cerro Moyo sector that experienced the deforestation of 240 hectares since the early 2000s, including a spike starting in 2011. It shows a very high-resolution Skysat image from March 2022, with and without the mining data (left and right panel, respectively). Again, note how the second image brings out previously “invisible” elements within the overall mining area: 579 data points (55 camps and 524 equipment). Zoom C1 further illustrates this point.

Zoom C. Mining activity in the Cerro Moyo sector without (left panel) and with (right panel) the mining data. Data: ACA/MAAP, Planet (Skysat).
Zoom C1. Mining activity in the Cerro Moyo sector without (left panel) and with (right panel) the mining data. Data: ACA/MAAP, Planet (Skysat).

Methodology

We tasked very high-resolution Skysat satellite imagery (0.5 meters), using the host company Planet’s tasking dashboard, of known mining locations in Yapacana National Park. We then closely and manually analyzed these images, documenting both mining camps and equipment. We researched aerial examples of mining areas in other countries to improve our identification abilities.

As a guide to locate key mining zones in these areas, we used mining area data produced by the organization SOS Orinoco, which used manual visual interpretation methods to identify these areas.

References

BirdLife International. Yapacana National Park (Parque Nacional Yapacana IBA). http://datazone.birdlife.org/site/factsheet/14941

Castillo R. y V. Salas. 2007. Estado de Conservación del Parque Nacional Yapacana. Reporte Especial. En: BioParques: Programa Observadores de Parques

SOS Orinoco. 2019. La Minería Aurífera en el Parque Nacional Yapacana Amazonas Venezolano: Un caso de extrema urgencia ambiental y geopolítica, nacional e internacional.

SOS Orinoco. 2020. La Minería Aurífera en el Parque Nacional Yapacana, Amazonas Venezolano | Un caso de extrema urgencia ambiental y geopolítica, nacional e internacional – Actualización al 2020.

Acknowledgements

We thank the organization SOSOrinoco for important information and comments related to this report.

Citation

Finer M, Mamani N (2022) Intense Mining Activity in Yapacana National Park (Venezuelan Amazon). MAAP: 156.