MAAP #214: Agriculture in the Amazon: New data reveals key patterns of crops & cattle pasture

Figure 1. Agricultural and pasture data in a section of the Brazilian Amazon.

A burst of new data and online visualization tools are revealing key land use patterns across the Amazon, particularly regarding the critical topic of agriculture. This type of data is particularly important because agriculture is the leading cause of overall Amazonian deforestation.

These new datasets include:

  • Crops. The International Food Policy Research Institute (IFPRI), a leading agriculture and food systems research authority, recently launched the latest version of their innovative crop monitoring product, the Spatial Production Allocation Model (SPAM).1 This latest version, developed with support from WRI’s Land & Carbon Lab, features spatial data for 46 crops, including soybean, oil palm, coffee, and cocoa. This data is mapped at 10-kilometer resolution across the Amazon and updated through 2020.2
    j
  • Cattle pasture. The Atlas of Pastures,3 developed by the Federal University of Goiás, facilitates access to data regarding Brazilian cattle pastures generated by MapBiomas. This data is mapped at 30-kilometer resolution and updated through 2022. We use Collection 5 from Mapbiomas for the rest of the Amazonian countries.4
    j
  • Gold mining. New mining data is included for additional context. Amazon Mining Watch uses machine learning to map open-pit gold mining.5 This data is mapped at 10-kilometer resolution across the Amazon and updated through 2023.

We merged and analyzed these new datasets to provide our first overall estimate of Amazonian land use, the most detailed effort to date across all nine countries of the biome. Figure 1 shows an example of this merged data in a section of the Brazilian Amazon.

Below, we present and illustrate the following major findings across the Amazon, and then zoom in on several regions across the Amazon to show the data in greater detail.

Major Findings

The Base Map illustrates several major findings detailed below.

Base Map. Overview of the merged datasets noted above for crops, pasture, and gold mining. Double-click to enlarge. Data: IFRI/SPAM, Lapig/UFG, Mapbiomas, AMW, ACA/MAAP.

1) Crops
We found that 40 crops in the SPAM dataset overlap with the Amazon, covering over 106 million hectares (13% of the Amazon biome).

Soybean covers over 67.5 million hectares, mostly in southern Brazil and Bolivia. Maize covers slightly more area (70 million hectares) but we consider this a secondary rotational crop with soy (thus, there is considerable overlap between these two crops).

Oil palm covers nearly 8 million hectares, concentrated in eastern Brazil, central Peru, northern Ecuador, and northern Colombia.

In the Andean Amazon zones of Peru, Ecuador, and Colombia, cocoa covers over 8 million hectares and the two types of coffee (Arabica and Robusta) cover 6.7 million hectares.

Other major crops across the Amazon include rice (13.8 million hectares), sorghum (10.9 million hectares), cassava (9.8 million hectares), sugarcane (9.6 million hectares), and wheat (5.8 million hectares).

2) Cattle Pasture
Cattle Pasture covers 76.3 million hectares (9% of the Amazon biome). The vast majority (92%) of the pasture is in Brazil, followed by Colombia and Bolivia.

3) Crops & Cattle Pasture
Overall, accounting for overlaps between the data, we estimate that crops and pasture combined cover 115.8 million hectares. This total is the equivalent of 19% of the Amazon biome.

In comparison, open-pit gold mining covered 1.9 million hectares (0.23% of the Amazon biome).

Zooms across the Amazon

Eastern Brazilian Amazon

Figure 2 shows the transition from the soy frontier to the cattle pasture frontier in the eastern Brazilian Amazon. Also note a mix of other crops, such as oil palm, sugarcane, and cassava, and some gold mining.

Figure 2. Eastern Brazilian Amazon. Data: IFRI/SPAM, Lapig/UFG, Mapbiomas, AMW, ACA/MAAP.

Andean Amazon (Peru and Ecuador)

Figure 3. Andean Amazon. Data: IFRI/SPAM, Lapig/UFG, Mapbiomas, AMW, ACA/MAAP.

The land use patterns are quite different in the Andean Amazon regions of Peru and Ecuador.

Figure 3 shows, that instead of soy and cattle pasture, there is instead oil palm, rice, coffee, and cocoa.

Also note the extension of the cattle pasture frontier in the western Brazilian Amazon, towards Peru and Bolivia.

 

 

 

 

 

 

 

 

 

 

 

 

Northeast Amazon (Venezuela, Guyana, Suriname, French Guiana)

Figure 4 shows the general lack of crops in the core Amazon regions Guyana, Suriname, and French Guiana, which is surely a major factor they are all considered High Forest cover, Low Deforestation countries (HFLD). In contrast, note there is abundant gold mining activity throughout this region.

Figure 4. Northeastern Amazon. Data: IFRI/SPAM, Lapig/UFG, Mapbiomas, AMW, ACA/MAAP.

Methods

For the SPAM data, we used the physical area, which is measured in a hectare and represents the actual area where a crop is grown (not counting how often production was harvested from it). We only considered values ​​greater than or equal to 100 ha per pixel.

For the Base Map, due to their importance as primary economic crops, we layered soybean and oil palm as the top two layers, respectively. From there, crops were layered in order of their total physical area across the Amazon. Thus, the full extensions of some crops are not shown if they overlap pixels with other crops that have greater physical area. For overlaps with crops and pasture, we favored the crops.

Notes & Data Sources

1 International Food Policy Research Institute (IFPRI), 2024, “Global Spatially-Disaggregated Crop Production Statistics Data for 2020 Version 1.0” https://doi.org/10.7910/DVN/SWPENT, Harvard Dataverse, V1

Spatial Production Allocation Model (SPAM)
SPAM 2020 v1.0 Global data (Updated 2024-04-16)

2 Note that the spatial resolution is rather low (10-kilometers) so all crop coverage data above should be interpreted as referential only.

3 The Atlas of Pastures (Atlas das Pastagens), open to the public, was developed by the Image Processing and Geoprocessing Laboratory of the Federal University of Goiás (Lapig/UFG), to facilitate access to results and products generated within the MapBiomas initiative, regarding Brazilian pastures.

https://atlasdaspastagens.ufg.br/

4 MapBiomas Collection 5;  https://amazonia.mapbiomas.org/en/

5 See MAAP #212 for more information on Amazon Mining Watch.

Citation

Finer M, Ariñez A (2024) Agriculture in the Amazon: New data reveals key patterns of crops & cattle pasture. MAAP: 214.

MAAP #180: Mennonites & Soy Deforestation in the Bolivian Amazon

Base Map. Soy deforestation by Mennonite colonies in the Bolivian Amazon.

We continue with the second part in our series on soy deforestation in the Bolivian Amazon.

In the first part, see MAAP #179, we documented the massive soy-driven deforestation of 904,518 hectares (2.2 million acres) between 2001 and 2021 in the Bolivian Amazon.

During this time period, a large number of farming-based Mennonite colonies have been established in the southern Bolivian Amazon, helping drive the increase in soybean expansion in the region.1,2

Here, we incorporate colony location data to estimate the role of Mennonite colonies in this soy deforestation.

In summary, we find that Mennonites have caused a third (33%) of the soy deforestation in the Bolivian Amazon over the past 5 years (see Base Map).

Overall, Mennonites caused nearly a quarter (23%) of the total soy deforestation over the past 20 years (210,980 hectares, or 521,344 acres).

 

 

 

 

 

 

Mennonites & Soy Deforestation in the Bolivian Amazon

We estimate that Mennonite colonies have caused the deforestation of 210,980 hectares (521,344 acres) for soy expansion in the Bolivian Amazon between 2001 and 2021 (see Base Map). This accounts for 23% of the total soybean deforestation in Bolivia over the past 20 years.

This Mennonite-driven soy deforestation peaked in 2016 (31,728 hectares), following a previous peak in 2008 (see Graph 1). In general, note that Mennonite soy deforestation has been relatively high (>2,000 hectares) every year from 2001 to 2020.

Focusing on just the past five years (2017-21), Mennonites have cleared 33,234 hectares (82,123 acres). This represents an increase to 33% of the total soybean deforestation during this time period.

Graph 1. Soy deforestation caused by Mennonites in the Bolivian Amazon, 2001-2021.

Satellite Images of Mennonite Colonies in the Bolivian Amazon

We present a series of recent satellite images showing examples of Mennonite colonies in the Bolivian Amazon. See the Base Map above for the location of the three zooms (A-C). Note that they are made up of highly-organized and connected agricultural plots that have been created following deforestation events over the past 20 years.

Methodology

For this series of reports, we employed a three-part methodology.

First, we mapped out “soy planted area” for 2001 to 2021 based on the data from Song et al 2021. This data is available on the University of Maryland’s GLAD site “Commodity Crop Mapping and Monitoring in South America.”3

Second, on top of the soy planted area noted above, we mapped out forest loss for 2001 to 2021, also based on data from the University of Maryland.4 This served as our estimate of soy-driven deforestation.

Third, on top of the soy planted area noted above, we incorporated an additional dataset from a recent study on the expansion of Mennonite colonies in Latin America.1 Spatial data from this study available here. We then estimated forest loss for these select Mennonite soy areas.

References

1Yann le Polain de Waroux, Janice Neumann, Anna O’Driscoll & Kerstin Schreiber (2021) Pious pioneers: the expansion of Mennonite colonies in Latin America, Journal of Land Use Science, 16:1, 1-17, DOI: 10.1080/1747423X.2020.1855266

2Nobbs-Thiessen, B. (2020). Landscape of Migration. The University of North Carolina Press.

3Song, X.P., M.C. Hansen, P. Potopov, B. Adusei, J. Pickering, M. Adami, A. Lima, V. Zalles, S.V. Stehman, D.M. Di Bella, C.M. Cecilia, E.J. Copati, L.B. Fernandes, A. Hernandez-Serna, S.M. Jantz, A.H. Pickens, S. Turubanova, and A. Tyukavina. 2021. Massive soybean expansion in South America since 2000 and implications for conservation.

4Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. “High-Resolution Global Maps of 21st-Century Forest Cover Change.” Science 342 (15 November): 850–53. Data available from: earthenginepartners.appspot.com/science-2013-global-forest.

Acknowledgements

These reports are part of a series focused on the Bolivian Amazon through a strategic collaboration between the sister organizations Amazon Conservation in Bolivia (ACEAA) and Amazon Conservation in the U.S.

Citation 

Finer M, Ariñez A (2023) Mennonites & Soy Deforestation in the Bolivian Amazon. MAAP #179.

MAAP #179: Soy Deforestation in the Bolivian Amazon

Base Map. Soy-driven deforestation in the Bolivian Amazon, 2001-2021. Click on map to enlarge.

It is generally known that commodities such as oil palm, soy, and cattle are major tropical deforestation drivers, but concise estimates are often difficult.

New satellite-based datasets are improving this situation. Notably, researchers recently published the first overview of soybean plantations for South America.1

Here, we use this data to estimate recent soy-driven deforestation in the Bolivian Amazon.

In the second part of this series, see MAAP #180, we incorporate additional data to estimate the role of Mennonite colonies in this soy deforestation.

In summary, we document the massive soy-driven deforestation of 904,518 hectares (2.2 million acres) between 2001 and 2021 in the Bolivian Amazon (see Base Map).

Of this total, Mennonites have caused 23% (210,980 hectares, or 521,344 acres).

 

 

 

 

 

Soy Deforestation in the Bolivian Amazon, 2001 – 2021

Soy has covered 2.1 million hectares of the southern Bolivian Amazon over the past 20 years, with current coverage around 1.2 million hectares.

We documented an extremely high level of soy-driven deforestation in the Bolivian Amazon: 904,518 hectares (2.2 million acres) between 2001 and 2021 (see Base Map above). This is a massive area, similar to the size of the U.S. state of Vermont.

This soy deforestation peaked in 2008 (92,000 hectares), but has been high (>18,000 hectares) every year between 2001 and 2019, meaning this is a long-running and persistent issue.

The vast majority of the total deforestation occurred in the Santa Cruz department, plus a small corner of adjacent Beni department.

Below, Figure 1 shows the overall massive soy deforestation over the past 20 years in the Bolivian Amazon, comparing 2001 (left panel) with 2021 (right panel).

Figure 1. Soy deforestation in the Bolivian Amazon, 2001 vs 2021.

Soy Deforestation in the Bolivian Amazon, 2017 – 2021

Of the total soy deforestation noted above, 11% (101,188 hectares, or 250,000 acres) occurred in just the past 5 years (2017-21).

Below, Figures 2-4 show examples of this recent soy deforestation, comparing 2017 (left panel) with 2021 (right panel). See the Base Map above for locations of insets A-C.

Figure 2. Soy deforestation in the Bolivian Amazon, 2017 vs 2021.
Figure 3. Soy deforestation in the Bolivian Amazon, 2017 vs 2021.
Figure 4. Soy deforestation in the Bolivian Amazon, 2017 vs 2021.

Methodology

For this series of reports, we employed a three-part methodology.

First, we mapped out “soy planted area” for 2001 to 2021 based on the data from Song et al 2021.1 This data is available on the University of Maryland’s GLAD site “Commodity Crop Mapping and Monitoring in South America.”

Second, on top of the soy planted area noted above, we mapped out forest loss for 2001 to 2021, also based on data from the University of Maryland.2 This served as our estimate of soy-driven deforestation.

Third, on top of the soy planted area noted above, we incorporated an additional dataset from a recent study on the expansion of Mennonite colonies in Latin America. 3 Spatial data from this study available here. We then estimated forest loss for these select Mennonite soy areas. See MAAP #180.

References

1Song, X.P., M.C. Hansen, P. Potopov, B. Adusei, J. Pickering, M. Adami, A. Lima, V. Zalles, S.V. Stehman, D.M. Di Bella, C.M. Cecilia, E.J. Copati, L.B. Fernandes, A. Hernandez-Serna, S.M. Jantz, A.H. Pickens, S. Turubanova, and A. Tyukavina. 2021. Massive soybean expansion in South America since 2000 and implications for conservation.

2Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. “High-Resolution Global Maps of 21st-Century Forest Cover Change.” Science 342 (15 November): 850–53. Data available from: earthenginepartners.appspot.com/science-2013-global-forest.

3Yann le Polain de Waroux, Janice Neumann, Anna O’Driscoll & Kerstin Schreiber (2021) Pious pioneers: the expansion of Mennonite colonies in Latin America, Journal of Land Use Science, 16:1, 1-17, DOI: 10.1080/1747423X.2020.1855266

Acknowledgements

These reports are part of a series focused on the Bolivian Amazon through a strategic collaboration between the sister organizations Amazon Conservation in Bolivia (ACEAA) and Amazon Conservation in the U.S.

Citation

Finer M, Ariñez A (2023) Soy Deforestation in the Bolivian Amazon. MAAP #179.

MAAP #161: Soy Deforestation in the Brazilian Amazon

Example of fires burning an area recently deforested for a new soy plantation. Data: Planet.

The Amazon Soy Moratorium has often been credited with significantly reducing soy-related deforestation in the Amazon over the past 15 years.

The Moratorium is a voluntary zero-deforestation agreement in which traders agree not to purchase soy grown on land cleared after 2008.

However, increasing soybean prices may be driving a resurgence of the problem of direct soy deforestation. That is, direct conversion of primary deforestation to soy plantation without passing an initial period as cattle pasture.

A recent report by Global Forest Watch estimated the direct soy deforestation of 29,000 hectares in the Brazilian Amazon in 2019 (Schneider et al 2021).

Here, we report the additional direct soy deforestation of at least 42,000 hectares in the Brazilian Amazon since 2020. All of these areas occurred in the state of Mato Grosso, located on the southeast edge of the Amazon.

We detected all of these soy plantations based on recent major fire activity (84 major fires), in which the recently deforested area was burned in preparation for the upcoming planting season (see Methodology below for more details).

Below, we show a base map of these recently deforested and then burned areas in the Mato Grosso state of the Brazilian Amazon followed by a series of examples from the satellite imagery.

Base Map – Recent Soy Deforestation in Brazilian Amazon

The Base Map below shows the areas, indicated by red dots, of recent direct deforestation for new soy plantations that we detected by monitoring major fire activity in 2022.

Between May 2021 and June 2022, we detected 84 major fires that corresponded to burning areas recently deforested for new soy plantations. These 84 areas, all of which occurred in the state of Mato Grosso, cover an area of 42,000 hectares.

Our geographic focus was the Brazilian Amazon biome in the state of Mato Grosso, as covered by the Amazon Soy Moratorium. For example, we also documented extensive direct soy deforestation and fire in the Bolivian Amazon (Santa Cruz department), but we did not include that information here.

Base Map. Recent Soy Deforestation in Brazilian Amazon. Data: ACA/MAAP, NICFI.

Examples of Deforestation & Fire for New Soy Plantations

As noted above, we detected the direct deforestation for new soy plantations by monitoring major fire activity in 2022. It is assumed that fires are preparing the recently deforested area for upcoming soy planting.

Methodology

We first tracked major fires in 2021 and 2022 using our novel real-time fire monitoring app. See MAAP #118 for more background information about the app and general methodology for detecting major fires based on aerosol emissions. The first major fires were detected in May of each year (2021 and 2022) and we continued collecting data on a daily basis through early July of each year. We monitored fires across the entire Amazon, but this report focuses on Brazil.

For all major fires detected with the app, we confirmed them with high-resolution satellite imagery from Planet. This confirmation was accomplished by visualizing either smoke plumes the day of the fire or burned areas in subsequent days after the fire.

All confirmed fires were assigned a category based on likely direct fire type or driver. These categories include 1) burning area recently deforested for new soy plantation, burning area recently deforested for new cattle pasture, and burning grasslands embedded in the larger rainforest matrix. On rarer occasions, one of these fire types may escape into the surrounding forest, making it an actual forest fire.

Specifically, the soy-related fires were defined as those burning recently deforested areas (that is, areas cleared since 2020) that had a distinctive linear pattern seemingly designed for organized crop agriculture. Most of the newly identified soy areas were also adjacent to existing soy plantations. In other words, the soy deforestation and fire pattern were visually quite distinct from cattle-related and grassland fires. Local experts have informed us that the fires are likely prepping the recently deforested area for the upcoming soy planting season. For all determined direct soy-related fires, we estimated the burned area using the spatial measurement tools in Planet Explorer and entered it into a database. We noted that in July of both years, the fires shifted away from soy and more towards cattle areas.

References

Martina Schneider, Liz Goldman, Mikaela Weisse, Luiz Amaral and Luiz Calado (2021) The Commodity Report: Soy Production’s Impact on Forests in South America. Link: https://www.globalforestwatch.org/blog/commodities/soy-production-forests-south-america/

X.-P. Song, M.C. Hansen, P. Potapov, et al (2021). Massive soybean expansion in South America since 2000 and implications for conservation. Nature Sustainability. Link: https://www.nature.com/articles/s41893-021-00729-z

Acknowledgements

We thank V. Silgueiro and R. Carvalho from the organization Instituto Centro de Vida (ICV) for helpful information and comments related to this report.

Citation

Finer M, Ariñez A (2022) Soy Deforestation in the Brazilian Amazon. MAAP: #161.