MAAP #204: New Road Construction in Waorani Indigenous Territory (Ecuadorian Amazon)

We analyze a new road project that enters the western sector of the Waorani Indigenous Territory, located in the heart of the Ecuadorian Amazon (see Base Map, below).

The project, called “Construction of the Arajuno-Nushiño-Ishpingo-Toñampade Road”, has been designed in response to the mobility needs of eight Waorani communities in the area, including Toñampade, the most populated community in the territory.

This road would cross 42 kilometers of primary forest from the Nushiño River to the community of Toñampade. Therefore, there is great potential to open new deforestation fronts along the route.

This road project was managed, approved, and promoted through the Waorani Nationality of Ecuador (NAWE) and its construction is led by the Provincial Government of Pastaza.

The Environmental Impact Study and  Management Plan for this road was prepared in 2016 and approved in 2018 and mentions the importance of protecting the biodiversity of the area and the cultural importance of the Amazon rainforests in the Waorani Territory.

In March 2023, the Waorani Organization of Pastaza (OWAP) presented a complaint to the Ministry of the Environment, in which it requested to suspend the construction of the road until the protection of the ecosystems is ensured.

In July, an assembly convened by the NAWE was held to discuss the road project, in which a consensus was sought with the OWAP to restart construction. The agreement was obtained that both Waorani entities, and the communities of Pastaza, will provide monitoring and control so that the technical specifications of the Environmental Impact Study and  Management Plan are met.

The objective of this report is to analyze the current state of the road, focused on deforestation caused by the construction (see Image 1), and the actions carried out by Waorani organizations to monitor the project.

Base Map of the Road Project

The Base Map shows the location of the project “Construction of the Arajuno-Nushiño-Ishpingo-Toñampade Road”, located in the heart of the Ecuadorian Amazon.

Base Map. Nushiño-Toñampade satellite monitoring area. Data: Planet-NICFI, EcoCiencia.

Road Construction

To document the current state of the road, we analyzed satellite imagery from September 2021 to January 2024. We found a total of 15.8 kilometers of construction (see Image 2).

In September 2021, the construction of the road section towards the community of Obepade was carried out, extending the previously built road from Arajuno (white line), with a new additio of 2.1 kilometers (yellow line).

From July 2022 to July 2023, construction was carried out from the Nunshiño River, reaching a total of 13.7 km towards Toñampade (orange and red lines). There is no evidence of new construction since July 2023, likely due to the above-noted complaint from OWAP.

Thus, the project still needs to construct 28.3 km through primary forest to reach Toñampade.

Image 2. Progress of the Nushiño-Toñampade road. Data: EcoCiencia; Planet-NICFI.

Territorial Monitoring of Road Construction

Image 3.

In 2022, the Waorani Nationality of Ecuador – NAWE, through its territorial technical team Kenguiwe, carried out the first territorial monitoring and surveillance tours to identify the environmental and social impacts of road construction.

Two cases were discovered where the construction of the road has generated deforestation processes along the route. See the location of these two cases in Image 2.

In the first case, an area of 0.54 hectares was deforested as a consequence of the construction of the road (Image 3). Potentially this deforestation process occurred to find alternative routes to the road.

 

 

 

 

 

 

 

In the second case, 5.27 hectares was deforested, additionally leading to a mudslide.

Monitoring by  the Waorani Nationality of Ecuador

Here we present a series of photographs from the territorial monitoring by the Waorani Nationality of Ecuador, investigating the impacts of the new road construction. All photo credits to the NAWE monitoring program.

 

 

 

Acknowledgments

We thank NAWE for facilitating and authorizing the use of the information and images generated by the monitoring work carried out by its technical team called “Kenguiwe”, with financial support from the EcoCiencia Foundation and the French Development Agency (AFD)  through the TerrIndigena Project.

This report is part of a series focused on the Ecuadorian Amazon through a strategic collaboration between the organizations Fundación EcoCiencia and Amazon Conservation, with the support of the Norwegian Development Cooperation Agency (Norad).

Ecociencia Logo

 

MAAP #202: Protecting Strategic, Free-flowing River Corridors in the Ecuadorian Amazon

Aerial photo of a section of the proposed river conservation corridor, highlighting some of the key components of the proposal: free-flowing river, intact riparian forest, and sustainable, low-impact tourism. Photo credit: Wil Henkel

Here, we present a model river conservation strategy proposed by the Ecuadorian Rivers Institute, designed to protect strategic free-flowing river corridors with intact surrounding forests in the critical transition zone between the Andes mountains and the Amazon lowlands.

The vision is to conserve freshwater resources and their surrounding riparian forests, encourage sustainable economic alternatives, and preserve free-flowing ecological connectivity at the basin scale.

There are few remaining high-quality and ecologically intact Andean-Amazon watershed corridors in Ecuador, making their protection and management an urgent national priority, ideally as part of a larger global tropical river conservation strategy

The proposal targets strategic corridors that have three major characteristics:

  1. Free-flowing rivers with no dams, diversions, or channel modifications, and no mining or dredging.
    h
  2. High-quality rivers that are a reference for water quality and have exceptional natural and cultural values.
    j
  3. Forested riparian buffer zones to preserve the quality and integrity of the river corridor, enhance the ecological connectivity between protected areas, and preserve habitat throughout critical transition zones.

These core components provide the key elements that are needed to preserve, restore, and enhance the integrity of the freshwater biodiversity, aquatic ecosystems, and scenic landscapes of strategic, free-flowing river corridors in the tropical Andes.

Priorities for River Protection in Ecuador

Base Map. Proposed free-flowing and intact riparian forest corridors (highlighted in yellow) in the northern Ecuadorian Amazon. Data: ERI.

The Base Map illustrates two proposed pilot projects in the northern Ecuadorian Amazon. Both represent key habitats for native fisheries and migratory birds and are important destinations for sustainable ecotourism activities. Following these two examples, national, regional (Amazon-scale), and global river protection programs could be created to include additional watershed corridors.

Jondachi-Hollín-Misahuallí-Napo River Corridor

The Jondachi and Hollín Rivers are major free-flowing tributaries of the Misahuallí River sub-basin in the Napo River watershed. These rivers drain from the Antisana and the Sumaco Napo Galeras National Parks, and provide strategic connectivity in a critical transition zone between montane cloudforests and lowland rainforest.

The proposed corridor would protect 200 km of free-flowing rivers and 19,050 hectares of riparian forest (with the application of 500m-wide buffers) within the Sumaco Biosphere Reserve. A significant portion of the corridor is within a forest reserve to provide enhanced connectivity and protection. The proposed corridor is an established destination for a variety of low-impact ecotourism activities that provide significant benefits to the local economy.

Piatúa River Corridor

The Piatúa River is another world-class paddle sports ecotourism destination that is renowned for its natural bathing areas with crystal clear water and sculpted granite boulders. The Piatúa River is a tributary of the Anzu River sub-basin of the Napo River watershed, which drains out of rugged paramo tundra and montane cloud forests deep within the Llanganates National Park, and provides critical ecosystem connectivity through a wide elevation range with high levels of endemic species.

The proposed corridor would protect 46 km of free-flowing rivers and tributaries and 947 hectares of riparian forest (with the application of a 100m-wide riparian buffer)

River Conservation Strategy

Guidelines for Protection

Legally binding frameworks are needed which restrict the development of intensive land-use activities and hydraulic infrastructure, and guarantee high-level, permanent protection of natural river corridors and natural instream flow regimes, with riparian buffer zones to preserve aquatic habitat and water quality. Ecuador has an existing framework which can be used to designate protected river corridors with the same status as national parks. However, until now it has only been applied to protect small catchment basin areas for sources of drinking water in headwater tributaries.

Management recommendations

Comprehensive management plans must be developed with meaningful public participation, and provisions for monitoring, control and enforcement of restricted activities. Independent monitoring and evaluation is necessary to ensure adequate compliance and implementation is achieved. Academic institutions should be encouraged to participate and develop research programs which reinforce the management objectives.

Social component

The successful implementation of the proposed river protection strategy depends on the active participation and endorsement by the local population and people who use the resource, along with adequate governance, and sufficient funding for management and incentives.

Protecting the river corridor ensures sustainable economic benefits for the inhabitants of the region through low-impact ecotourism activities (such as kayaking, rafting, mountain biking, bird watching, and hiking) which are compatible with the management of the resource.

However, additional financial incentives (such as land grants) are needed to reach other sectors of the population in order to take pressure off of the increasing encroachment into the forested riparian corridors for timber harvesting and subsistence-level agricultural expansion.

Ongoing support and guidance is also needed for local communities and landowners to identify employment opportunities and encourage other sustainable production activities in order to optimize the use of degraded areas outside of the protected riparian buffers.

In the case of plastic recycling, the population of Ecuador has responded favorably to adapting cultural and behavioral norms in response to small incentives created by a tax on plastic beverage containers, to address a significant waste management issue. This is a positive sign for what to expect if incentives are provided for protecting natural river corridors.

Financial mechanisms

Securing long-term financial commitments is a fundamental component to ensure the viability of any natural resource protection program. Most developing countries are burdened by foreign debt and are struggling to meet their fiscal obligations and priorities, which often lessens priorities for environmental management. However, experience has shown that the international community responds favorably to reinforce commitments made by host countries to preserve natural and cultural heritage of global significance, and debt forgiveness and debt reduction transactions for host country governments, from wealthy countries would be expected to provide some funding for the proposed strategy to protect strategic free-flowing river corridors in Ecuador.

The Government of Ecuador is facing a critical economic situation. However, water conservation funds have been successfully implemented to cover the cost of managing the protection of drinking water sources for metropolitan areas by including a small environmental management fee on monthly water bills. Some of these water conservation funds have generated substantial levels of endowment to the point where they could have the potential to provide funding for the protection of strategic river corridors, if that was authorized by the water fund consortium.

While the outcome of COP28 may have put a temporarily damper on the value of the nascent carbon credit market, once the programs are restructured to provide for improved accountability and implementation, the expectations for carbon credits to provide a source of long-term funding for the protection and management of strategic free-flowing river corridors as a climate mitigation strategy are quite encouraging, as are expectations for eventual funding allocations for river protection to be derived from the COP21 Paris Climate Accord, and the Global Environmental Facility (GEF).

Meanwhile, voluntary contributions from hydroelectric projects and extractive projects to offset their impacts by designating a percentage of annual income from the generation of electricity for the protection of free-flowing river corridors.

Likewise, voluntary contributions from international finance institutions based on a percentage of annual revenue disbursed through their investment portfolio could provide meaningful support for the protection of free-flowing river corridors, once these agreements are established.

Annex

Herre is a recent satellite image of the Jondachi-Hollín-Misahuallí-Napo River Corridor. Note the intact river and forest core to the east of the major road network, and north of the Napo River.

 

Citation

Terry M, Finer M, Ariñez A (2023) Protecting Free-flowing & Intact River Corridors in the Ecuadorian Amazon. MAAP: 202.

MAAP #200: State of the Amazon in 2023

The first MAAP report, published in March 2015, took a detailed look at the escalating gold mining deforestation in the Peruvian Amazon.

Figure 1. Most recent cloud-free view of the entire Amazon biome (2023, quarter 3). Data: Planet, NICFI, ACA/MAAP.

The following 198 reports, over the past 8.5 years, continued to examine the most urgent deforestation-related issues across the Amazon.

For our 200th report, we provide our rapid assessment of the current state of the Amazon.

Overall, the situation is dire, with the Amazon nearing two critical deforestation-induced tipping points. The first is the widely feared conversion of moist rainforests to drier savannahs, due to decreased moisture recycling across the Amazon (see MAAP #164). The second is the more newly feared conversion of the Amazon as a critical carbon sink buffering global climate change, to a carbon source fueling it (see MAAP #144).

There is cause for hope, however. It is possible in the long term to protect the core Amazon, as nearly half is now designated as protected areas and indigenous territories, both of which have much lower deforestation rates than surrounding areas (see MAAP #183). Also, new NASA data reveals the Amazon is still home to abundant carbon reserves in these core areas (see MAAP #160 and MAAP #199).

Also on the positive news front, we recently reported a major reduction (over one-half) in primary forest loss between the current year 2023 and last year 2022 across the Amazon, especially in Brazil and Colombia (MAAP #201).

Much is made about Amazon fires in the media, but over the past several years we have revealed that the vast majority of major fires across the Amazon (namely, in Brazil, Bolivia, Peru, and Colombia) are actually burning recently deforested areas (MAAP #168). It is only during intense dry seasons that some of these fires escape and become actual forest fires.

Figure 1 shows the most recent cloud-free view of the entire Amazon biome. On the positive, one can clearly see the core Amazon still stands. On the negative, however, the expanding deforestation around the edges is evident.


Major Deforestation Fronts – 2023

In this section, we review the current major deforestation fronts across the Amazon.

Figure 2 indicates these fronts (insets A-H) in relation to deforestation hotspot data over the past 8 years during MAAP’s active monitoring timeframe (2015-2022). Below we describe each deforestation area, by country. Common drivers across numerous Amazon countries include roads (MAAP #157), agriculture (MAAP #161), cattle, and gold mining (MAAP #178).

Also note that further below, in the Annex, we show the relative order of total Amazon primary forest loss by country over the past two years: Brazil by far the highest, followed by a middle pack of Bolivia, Peru, and Colombia, followed by lower levels in Venezuela, Ecuador, Suriname, Guyana, and French Guiana.

Figure 2. Amazon forest loss hotspots, 2015-2022. Data: UMD, Planet/NICFI, ACA/MAAP.

 

Brazilian Amazon

Figure 3. Major forest loss hotspots in the Brazilian Amazon. Data: UMD, Planet/NICFI, ACA/MAAP.

Brazil continues to be, by far, the leading source of Amazonian deforestation (MAAP #187), led by three major drivers: cattle pasture expansion near roads, soy plantations, and gold mining.

Deforestation for new cattle pasture is concentrated along the extensive road networks spanning the eastern and southern Brazilian Amazon (for example, Inset A).

Deforestation for expanding soy plantations is concentrated in the southeast Brazilian Amazon (Inset B; see MAAP #161).

Gold mining deforestation impacts numerous sites, including several indigenous territories (for example, Inset C; see MAAP #178).

Bolivian Amazon

Figure 4. Major forest loss hotspots in the Bolivian Amazon. Data: UMD, Planet/NICFI, ACA/MAAP.

Bolivia has emerged as the clear second-leading source of Amazonian deforestation, with a major increasing trend over the past two years (MAAP #187).

The deforestation is concentrated in the soy frontier located in the southeast (Inset D, see MAAP #179).

Note that, increasingly, this soy deforestation is carried out by Mennonite colonies (MAAP #180). We revealed that Mennonites caused the deforestation of over 210,000 hectares since 2001, including 33,000 hectares since 2017.

Peruvian Amazon

Figure 5. Major forest loss hotspots in the Peruvian Amazon. Data: UMD, Planet/NICFI, ACA/MAAP.

Peru is the third-leading source of Amazonian deforestation (MAAP #187).

In the central Amazon, we have been highlighting the rapid deforestation for new Mennonite colonies (see MAAP #188). MAAP reports revealed, in real-time, Mennonite deforestation growing from zero in 2016, to 3,400 hectares in 2021, to 4,800 hectares in 2022, to 7,032 hectares in 2023.

In the southern Amazon, gold mining deforestation continues to be a major cause of deforestation, primarily in indigenous communities, protected area buffer zones, and within the official Mining Corridor (MAAP #185). Most recently, we showed that gold mining has caused the deforestation on nearly 24,000 hectares between just 2021 and 2023 (MAAP #195).

Colombian Amazon

Figure 6. Major forest loss hotspots in the Colombian Amazon. Data: UMD, Planet/NICFI, ACA/MAAP.

Colombia is the fourth-leading source of Amazonian deforestation.

Deforestation in Colombia spiked following the 2016 peace agreement between the Colombian government and the FARC guerilla group (MAAP #120), but was the only country with a notable deforestation decrease in 2022 (MAAP #187).

Forest loss is concentrated in an “arc of deforestation” surrounding numerous Protected Areas (such as Chiribiquete, Tinigua, and Macarena National Parks) and Indigenous Reserves.

In Colombia, the major direct deforestation driver is cattle pasture, but this expansion is largely caused by land grabbing as a critical indirect driver. Coca plantations also continue to be an important direct driver in certain remote areas.

Both cattle and coca are impacting protected areas, especially Tinigua and Chiribiquete National Parks (cattle); and Macrarena National Park and Nukak National Nature Reserve (coca).

Ecuadorian Amazon

Figure 7. Major forest loss hotspots in the Ecuadorian Amazon. Data: UMD, Planet/NICFI, ACA/MAAP, RAISG.

Although accounting for just 1% of total loss across the Amazon, deforestation in the Ecuadorian Amazon was the highest on record in 2022 (18,902 hectares), up a striking 80% since 2021.

There are several deforestation hotspots caused by gold mining (see MAAP #182), oil palm plantation expansion, and small-scale agriculture.

Venezuelan Amazon

There is a deforestation hotspot caused by gold mining in Yapacana National Park (see MAAP #173MAAP #156MAAP #169).

Annex: Amazon Primary Forest Loss (By Country), 2021-2022

Acknowledgments

We deeply thank the following funders for supporting MAAP over the past 10 years:
International Conservation Fund of Canada (ICFC)
Norwegian Agency for Development Cooperation (NORAD)
United States Agency for International Development (USAID)
MacArthur Foundation
Andes Amazon Fund (AAF)
Wyss Foundation
Erol Foundation
Global Forest Watch/World Resources Institute
Overbrook Foundation
Global Conservation

We also thank our key data providers:
Planet (optical satellite imagery)
University of Maryland (automated forest loss alerts)
Global Forest Watch (portal featuring integrated forest loss alerts)
NICFI monthly mosaics
CLASlite (our original forest loss detection tool)

Citation

Finer M, Mamani N, Novoa S, Ariñez A (2023) State of the Amazon in 2023. MAAP: 200.

MAAP #199: Amazon Carbon Update, based on NASA’s GEDI Mission

As we approach the COP28 climate summit, starting in Dubai in late November, we provide here a concise update on the current state of remaining Amazon carbon reserves.

We present the newly updated version of NASA’s GEDI data1, which uses lasers aboard the International Space Station to provide cutting-edge estimates of aboveground biomass density on a global scale.

Here, we zoom in on the Amazon and take a first look at the newly updated data, which covers the time period of April 2019 – March 2023.2

This data, which is measured in megagrams of aboveground biomass per hectare (Mg/ha) at a 1-kilometer resolution, serves as our estimate for aboveground carbon reserves.

Figure 1 displays aboveground biomass across the Amazon biome. Note the highest carbon densities (indicated in bright yellow) are located in both the northeast Amazon and southwest Amazon.

Aboveground Biomass across the Amazon

Figure 2 also displays aboveground biomass across the Amazon biome, but this time with country boundaries and labels added.

Note that the peak biomass concentrations in the northeast Amazon include Suriname, French Guiana, and the northeast corner of Brazil. The peak biomass concentrations in the southwest Amazon are centered in southern Peru. Also note that many parts of Ecuador, Colombia, Venezuela, Guyana, Bolivia, Brazil, and northern Peru have high carbon densities as well.

Figure 2. Aboveground biomass density (carbon estimate) across the Amazon biome, with country boundaries. Data: NASA/GEDI, NICFI.

Carbon Estimates

We calculated over 78 billion metric tons of aboveground biomass across the Amazon biome (78,184,161,090 metric tons to be exact). Using a general assumption that 48% of this biomass is carbon3, we estimate over 37 billion metric tons of carbon across the Amazon (37,528,397,323 metric tons).

Note that these totals are likely underestimates given that the laser-based data has not yet achieved full coverage across the Amazon (that is, there are many areas where the lasers have not yet recorded data, leaving visible blanks in the maps above).

This is consistent with a previous study based on another independent dataset, where we estimated 6.7 billion metric tons of carbon in the Peruvian Amazon as of 2013 (MAAP #148). The current GEDI data estimates at least 5.3 billion metric tons in the Peruvian Amazon.

Carbon Sink

In a previous report, we showed that the Brazilian Amazon has become a net carbon source, whereas the total Amazon is still a net carbon sink (MAAP #144). Our current report goes one step further in terms of showing just how much carbon is left in that sink.

Notes

1GEDI L4B Gridded Aboveground Biomass Density, Version 2.1. https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2299

2Note that we previously reported on the initial data release, which covered the time period of April 2019 – August 2021 (see MAAP #160).

3Domke et al (2022) How Much Carbon is in Tree Biomass?. USDA/Forest Service.

Acknowledgements

This work was supported by NORAD (Norwegian Agency for Development Cooperation) and ICFC (International Conservation Fund of Canada).

Citation

Mamani N, Finer M, Ariñez A (2022) Amazon Carbon Update, based on NASA’s GEDI Mission. MAAP: 199.

MAAP #197: Illegal Gold Mining Across the Amazon

Example of major gold mining zone in the Peruvian Amazon. Data: Planet.

Illegal Gold Mining continues to be one of the major issues facing nearly all Amazonian countries.

In fact, following the recent high-level summit of the Amazon Cooperation Treaty Organization, the nations’ leaders signed the Belém Declaration, which contains a commitment to prevent and combat illegal mining, including strengthened regional and international cooperation (Objective 32).

Illegal gold mining is a major threat to the Amazon because it impacts both primary forests and rivers, often in remote and critical areas such as protected areas & indigenous territories.

That is, illegal gold mining is both a major deforestation driver and a source of water contamination (especially mercury) across the Amazon.

Previously, in MAAP #178, we presented a large-scale overview of the major gold mining deforestation hotspots across the entire Amazon biome. We found that gold mining is actively causing deforestation in nearly all nine countries of the Amazon.

Here, we update this analysis with two important additions. First, we add to the overview major gold mining operations taking place in rivers, in addition to those causing deforestation (see Figure 1).

Second, we present a new map of likely illegal gold mining sites, based on information from partners and location with protected areas and indigenous territories (see Figure 2).

Finally, we show a series of high-resolution satellite images of key examples of illegal Amazon gold mining.

Updated Amazon Gold Mining Map

Figure 1 is our updated Amazon gold mining map.

The orange dots indicate areas where gold mining is currently causing deforestation of primary forests. The blue dots indicate areas where gold mining is occurring in rivers. Combined, we documented 58 active forest and river-based mining sites across the Amazon.

The dots outlined in red indicate the mining sites that are likely illegal, for both forest and river-based mining. We found at least 49 cases of illegal mining across the Amazon, the vast majority of the active mining sites noted above.

Note the concentrations of illegal mining causing deforestation in southern Peru, across eastern Brazil, and across Ecuador. Similarly, note the concentrations of illegal mining in rivers in northern Peru and adjacent Colombia and Brazil.

Figure 1. Updated Amazon gold mining map. Data: ACA/MAAP. Click to enlarge.

Protected Areas & Indigenous Territories

Figure 2 adds protected areas and indigenous territories. We found at least 36 conflictive overlaps: 16 in protected areas and 20 in indigenous territories. We also found an additional two conflicts with Brazilian National Forests.

We highlight a number of high-conflict zones. For protected areas: Podocarpus National Park in Ecuador; Madidi National Park in Bolivia; Canaima, Caura, and Yapacana National Parks in Venezuela. We note that the Peruvian government has been effectively minimizing invasions in protected areas in the southern region of Madre de Dios (Tambopata National Reserve and Amarakaeri Communal Reserve).

For indigenous territories: Kayapo, Menkragnoti, Yanomami, and Mundurucu in Brazil; Pueblo Shuar Arutam in Ecuador, and a number of communities in southern Peru.

Figure 2. Amazon gold mining map., with protected areas and indigenous territories. Data: ACA/MAAP, RAISG. Click to enlarge.

Methods

The forest-based mining sites displayed in Figure 1 are largely based on information obtained over the last several years of our deforestation monitoring work. The river-based sites are largely based on information obtained from partners in country and on the ground.

We complemented this information with automated, machine-based data from Amazon Mining Watch, and data from RAISG.

For these sources, we checked recent imagery and only included sites that appeared to still be active.

Classification as an illegal mining site is largely based on location within protected areas or indigenous territories, or clearly
outside of an authorized mining zone

Citation

Finer M, Mamani N, Arinez A, Novoa S, Larrea-Alcázar D, Villa J (2023) Illegal Gold Mining Across the Amazon. MAAP: 197.

 

MAAP #187: Amazon Deforestation & Fire Hotspots 2022

2022 Amazon Forest Loss Base Map. Deforestation and fire hotspots across the full Amazon biome. Data: UMD/GLAD, ACA/MAAP.

We present a detailed look at the major 2022 Amazon forest loss hotspots, based on the final annual data recently released by the University of Maryland (and featured on Global Forest Watch).

This dataset is unique in that it is consistent across all nine countries of the Amazon, and distinguishes forest loss from fire, leaving the rest as a proxy for deforestation (but also includes natural loss).

Thus, we are able to present both deforestation and fire hotspots across the Amazon.

The Base Map (see right) and Results Graph (see below) reveal several key findings:

  • In 2022, we estimate the deforestation of 1.98 million hectares (4.89 million acres). This represents a major 21% increase from 2021, and is the second highest on record, behind only the peak in 2004.
    k
  • Deforestation hotspots were especially concentrated along roads in the Brazilian Amazon, the soy frontier in the southeast Bolivian Amazon, and near protected areas in northwest Colombian Amazon.
    k
  • The vast majority of the deforestation occurred in Brazil (72.8%), followed by Bolivia (12.4%)Peru (7.3%), and Colombia (4.9%). Note that deforestation in Bolivia was the highest on record, and in Brazil the highest since the early 2000s.
    k
  • Fires impacted an additional 491,223 hectares (1.2 million acres) of primary forest. This total represents a 1.6% increase from 2021, and the 4th highest on record (behind only intense fire seasons of 2016, 2017, and 2020). Moreover, each of the seven most intense fire seasons has occurred in the past seven years. Nearly 93% of the fire impact occurred in just two countries: Brazil and Bolivia.
    k
  • In total, 2.47 million hectares (6.1 million acres) of primary forest were impacted by deforestation and fire. This total represents the third highest on record, only behind the post-El Niño years of 2016 and 2017.
    k
  • Since 2002, we estimate the deforestation of 30.7 million hectares (75.9 million acres) of primary forest, greater than the size of Italy or the U.S. state of Arizona.

Below, we zoom in on the six countries with the highest deforestation (Brazil, Bolivia, Peru, Colombia, Ecuador, and Venezuela) with additional maps and analysis.

Amazon Primary Forest Loss (Combined), 2002-2022

Amazon Forest Loss Results Graph, 2002-22. Data: UMD/GLAD, ACA/MAAP.

Amazon Primary Forest Loss (By Country), 2002-2022

Brazilian Amazon

Brazil Base Map, 2022. Deforestation and fire hotspots in the Brazilian Amazon in relation to major roads. Data: UMD/GLAD, ACA/MAAP.

In 2022, the Brazilian Amazon lost 1.4 million hectares (3.56 million acres) of primary forest to deforestation. Fires directly impacted an additional 348,824 hectares.

The deforestation rose 20.5% from 2021, and was the highest on record since the peak years of 2002 – 2005.

The fire impact was the 4th highest on record, only behind the intense fire years of 2016, 2017, and 2020.

The deforestation was concentrated along the major road networks, especially roads 230 (Trans-Amazonian Highway), 364, 319, and 163 in the states of Amazonas, Pará, Rondônia, and Acre (see Brazil Base Map).

The direct fire impacts were concentrated in the soy frontier, located in southeastern state of Mato Grosso

 

 

 

 

 

 

Bolivian Amazon

Bolivia Base Map, 2022. Deforestation and fire hotspots in Bolivian Amazon. Data: UMD/GLAD, ACA/MAAP.

In 2022, the Bolivian Amazon lost 245,177 hectares of primary forest to deforestation. Fires directly impacted an additional 106,922 hectares.

We highlight that this deforestation was 47% higher than 2021, and the highest on record (by far).

The fire impact was also up from last year, and the second-highest on record behind just the intense year of 2020.

Both the deforestation and fires were concentrated in the soy frontier located in southeastern department of Santa Cruz (see Bolivia Base Map).

 

 

 

 

 

 

 

 

 

 

Peruvian Amazon

Peru Base Map, 2022. Deforestation and fire hotspots in the Peruvian Amazon. Data: UMD/GLAD, ACA/MAAP.

In 2022, the Peruvian Amazon lost 144,682 hectares of primary forest to deforestation. Fires directly impacted an additional 16,408 hectares.

Deforestation increased 6.7% from 2021, and was the 5th highest on record. Fire impact decreased from last year, but was still relatively high.

The deforestation was concentrated in the central and southern Amazon (Ucayali and Madre de Dios regions, respectively) (see Peru Base Map).

In the central Amazon, we highlight the rapid deforestation for a new Mennonite colony (see MAAP #166).

In the southern Amazon, gold mining deforestation continues to be an issue in indigenous communities and within the official Mining Corridor.

 

 

 

 

 

 

 

Colombian Amazon

Colombia Base Map, 2022. Deforestation and fire hotspots in northwest Colombian Amazon. Data: UMD/GLAD, ACA/MAAP, FCDS.

In 2022, the Colombian Amazon lost 97,417 hectares of primary forest to deforestation. Fires directly impacted an additional 12,880 hectares.

Deforestation decreased 2% from 2021, but it was still relatively high (5th highest on record), continuing the trend of elevated forest loss since the FARC peace agreement in 2016.

Fire impact increased from last year and was actually the highest on record, edging out 2018 and 2019.

As described in previous reports (see MAAP #120), the Colombia Base Map shows there continues to be an “arc of deforestation” in the northwest Colombian Amazon (Caqueta, Meta, and Guaviare departments).

This arc impacts numerous Protected Areas (particularly Tinigua and Chiribiquete National Parks) and Indigenous Reserves (particularly Yari-Yaguara II and Nukak Maku).

 

 

 

 

Ecuadorian Amazon

Ecuador Base Map, 2022. Deforestation and fire hotspots in the Ecuadorian Amazon. Data: UMD/GLAD, ACA/MAAP.

Although accounting for just 1% of total loss across the Amazon, deforestation in the Ecuadorian Amazon was the highest on record in 2022 (18,902 hectares), up a striking 80% since 2021.

There are several deforestation hotspots caused by gold mining (see MAAP #182), oil palm plantation expansion, and small-scale agriculture.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Venezuelan Amazon

In the Venezuelan Amazon, deforestation was on par with last year (12,584 hectares).

There is a deforestation hotspot caused by gold mining in Yapacana National Park (see MAAP #173, MAAP #156, MAAP #169).

There are also hotspots in the Orinoco Mining Arc caused by mining and agriculture.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methodology

The analysis was based on 30-meter resolution annual forest loss data produced by the University of Maryland and also presented by Global Forest Watch.

This data was complemented with the Global Forest Loss due to fire dataset that is unique in terms of being consistent across the Amazon (in contrast to country specific estimates) and distinguishes forest loss caused directly by fire (note that virtually all Amazon fires are human-caused). The values included were ‘medium’ and ‘high’ confidence levels (code 3-4).

The remaining forest loss serves as a likely close proxy for deforestation, with the only remaining exception being natural events such as landslides, wind storms, and meandering rivers. The values used to estimate this category was ‘low’ certainty of forest loss due to fire (code 2), and forest loss due to other ‘non-fire’ drivers (code 1).

For the baseline, it was defined to establish areas with >30% tree canopy density in 2000. Importantly, we applied a filter to calculate only primary forest loss by intersecting the forest cover loss data with the additional dataset “primary humid tropical forests” as of 2001 (Turubanova et al 2018). For more details on this part of the methodology, see the Technical Blog from Global Forest Watch (Goldman and Weisse 2019).

Our geographic range for the Amazon is a hybrid designed for maximum inclusion: biogeographic boundary (as defined by RAISG) for all countries, except for Bolivia and Peru, where we use the watershed boundary, and Brazil, where we use the Legal Amazon boundary.

To identify the deforestation hotspots, we conducted a kernel density estimate. This type of analysis calculates the magnitude per unit area of a particular phenomenon, in this case, forest cover loss. We conducted this analysis using the Kernel Density tool from the Spatial Analyst Tool Box of ArcGIS. We used the following parameters:

Search Radius: 15000 layer units (meters)
Kernel Density Function: Quartic kernel function
Cell Size in the map: 200 x 200 meters (4 hectares)
Everything else was left to the default setting.

For the Base Map, we used the following concentration percentages: High: 3-14%; Very High: >14%.

Acknowledgements

We thank colleagues at Global Forest Watch (GFW), an initiative of the World Resources Institute (WRI) for comments and access to data.

This work was supported by Norad (Norwegian Agency for Development Cooperation) and ICFC (International Conservation Fund of Canada).

Citation

Finer M, Mamani N (2023) Amazon Deforestation & Fire Hotspots 2022. MAAP: 187

MAAP #183: Protected Areas & Indigenous Territories Effective Against Deforestation Across Amazon

Base Map. Primary forest loss (2017-21) across the Amazon, in relation to protected areas and indigenous territories.

As deforestation continues to threaten primary forest across the Amazon, key land use designations are one of the best hopes for the long-term conservation of critical remaining intact forests.

Here, we evaluate the impact of two of the most important: protected areas & indigenous territories.

Our study looked across all nine countries of the Amazon biome, a vast area of 883.7 million hectares (see Base Map).

We calculated primary forest loss over the past 5 years (2017-2021).

For the first time, we were able to distinguish fire vs non-fire forest loss. For non-fire, while this does include natural events (such as landslides and wind storms), we consider this our best proxy for human-caused deforestation.

We analyzed the results across three major land use categories:

1) Protected Areas (national and state/department levels), which cover 197 million hectares (23.6% of Amazon).

2) Indigenous Territories (official), which cover 163.8 million hectares (19.6% of Amazon).

3) Other (all remaining areas outside protected areas and indigenous territories), which cover 473 million hectares (56.7% of Amazon).

In summary, we found that deforestation was the primary driver of forest loss, with fire always being a smaller subset. Averaged across all 5 years, protected areas and indigenous territories had similar levels of effectiveness, reducing primary forest loss rate by 3x compared to areas outside of these designations.

Below, we show the key results across the Amazon in greater detail, including a breakdown for the western Amazon (Bolivia, Colombia, Ecuador, and Peru) and the Brazilian Amazon.

Key Findings

Amazon Biome

We documented the loss of 11 million hectares of primary forests across all nine countries of the Amazon biome between 2017 and 2021. Of this total, 71% was non-fire (deforestation and natural) and 29% was fire.

For the major land use categories, 11% of the forest loss occurred in both protected areas and indigenous territories, respectively, while the remaining 78% occurred outside these designations.

To standardize these results for the varying area coverages, we calculated annual primary forest loss rates (loss/total area of each category). Figure 1 displays the results for these rates across all nine countries of the Amazon biome.

Figure 1. Primary forest loss rates across the Amazon, 2017-21.

Broken down by year, 2017 had the highest forest loss rates, with both a severe deforestation and fire season. In addition, 2021 had the second highest deforestation rate, while 2020 had the second highest fire loss rate.

Averaged across all five years, protected areas (green) had the lowest overall primary forest loss rate (0.12%), closely followed by indigenous territories (0.14%).

Interestingly, indigenous territories (orange) actually had a slightly lower deforestation rate compared to protected areas (0.7 vs 0.8%), but higher fire loss rate (o.7 vs .04%), resulting in the overall higher forest loss rate noted above.

Outside of these designations (red), the primary forest loss rate was triple (.36%), especially due to much higher deforestation.

Western Amazon

Breaking the results down specifically for the western Amazon (Bolivia, Colombia, Ecuador, and Peru), we documented the loss of 2.6 million hectares of primary forests between 2017 and 2021. Of this total, 80% was non-fire (deforestation and natural) and 20% was fire.

For the major land use categories, 9.6% occurred in protected areas, 15.6% in indigenous territories, and the remaining 74.8% occurred outside these designations.

Figure 2 displays the standardized primary forest loss rates across the western Amazon.

Figure 2. Primary forest loss rates across the Western Amazon, 2017-21.

Broken down by year, 2017 had the highest deforestation rate and overall forest loss rates. But 2020 had the highest fire loss rate, mainly due to extensive fires in Bolivia. 2021 also had a relatively high deforestation rate. Also, note the high level of fires in protected areas in 2020 and 2021, and indigenous territories in 2019.

Averaged across all five years, protected areas had the lowest overall primary forest loss rate (0.11%), followed by indigenous territories (0.16%).

Outside of these designations, the primary forest loss rate was .30%. That is, triple the protected areas rate and double the indigenous territories rate.

Brazilian Amazon

Breaking the results down specifically for the Brazilian Amazon, we documented the loss of 8.1 million hectares of primary forests between 2017 and 2021. Of this total, 68% was non-fire (deforestation and natural) and 32% was fire.

For the major land use categories, 9.4% occurred in indigenous territories, 11.2% occurred in protected areas, and the remaining 79.4% occurred outside these designations.

Figure 3 displays the standardized primary forest loss rates across the Brazilian Amazon.

Figure 3. Primary forest loss rates in the Brazilian Amazon, 2017-21.

Broken down by year, 2017 had the highest forest loss rate recorded in the entire study (.58%), due to both elevated deforestation and fire. Note that indigenous territories were particularly impacted by fire in 2017.

2020 had the next highest forest loss rate, also driven by an intense fire season. Fires were not as severe the following year in 2021, but deforestation increased.

Averaged across all five years, indigenous territories had the lowest overall primary forest loss rate (0.14%), closely followed by protected areas (0.15%).

Interestingly, indigenous territories had a lower deforestation rate compared to protected areas (0.5 vs 0.11%), but higher fire impact (0.09 vs 0.04%).

Outside of these designations (red), the primary forest loss rate was triple (.45%).

Methodology

To estimate deforestation across all three categories (protected areas, indigenous territories, and other), we used annual forest loss data (2017-21) from the University of Maryland (Global Land Analysis and Discovery GLAD laboratory) to have a consistent source across all countries (Hansen et al 2013).

We obtained this data, which has a 30-meter spatial resolution, from the “Global Forest Loss due to Fires 2000–2021” data download page. It is also possible to visualize and interact with the data on the main Global Forest Change portal.

The annual data is disaggregated into forest loss due to fire vs. non-fire (other disturbance drivers). It is important to note that the non-fire drivers include both human-caused deforestation and forest loss caused by natural forces (landslides, wind storms, etc.).

We also filtered this data for only primary forest loss, following the established methodology of Global Forest Watch. Primary forest is generally defined as intact forest that has not been previously cleared (as opposed to previously cleared secondary forest, for example). We applied this filter by intersecting the forest cover loss data with the additional dataset “primary humid tropical forests” as of 2001 (Turubanova et al 2018). Thus, we often use the term “primary forest loss” to describe this filtered data.

Data presented as primary forest loss rate is standardized per the total area covered of each respective category per year (annual). For example, to properly compare raw forest loss data in areas that are 100 hectares vs 1,000 hectares total size respectively, we divide by the area to standardize the result.

Our geographic range extends from the Andes to the Amazon plain and reaching the transitions with the Cerrado and the Pantanal. This range includes nine countries of the Amazon (or Pan-Amazon region as defined by RAISG) and consists of a combination of the Amazon watershed limit, the Amazon biogeographic limit and the Legal Amazon limit in Brazil. See Base Map above for delineation of this hybrid Amazon limit, designed for maximum inclusion.

Additional data sources include:

  • National and state/department level protected areas: RUNAP 2020 (Colombia), SNAP 2022 (Ecuador), SERNAP & ACEAA 2020 (Bolivia), SERNANP 2022 (Peru), INPE/Terrabrasilis 2022 (Brazil), SOS Orinoco 2021 (Venezuela), and RAISG 2020 (Guyana, Suriname, and French Guiana.)
  • Indigenous Territories: RAISG & Ecociencia 2022 (Ecuador), INPE/Terrabrasilis 2022 (Brazil), RAISG 2020 (Colombia, Bolivia, Venezuela, Guyana, Suriname, and French Guiana), and MINCU & ACCA 2021 (Peru). For Peru, this includes titled native communities and Indigenous/Territorial Reserves for indigenous groups in voluntary isolation.

For analysis, we categorized Protected Areas first, then Indigenous Territories to avoid overlapping areas. Each category was disaggregated by year created/recognized to match the annual report of forest loss, for example. If a Protected area was created in December 2018, it would be considered within the analysis for the year 2019.

Acknowledgements

This work was supported by the Andes Amazon Fund (AAF), Norwegian Agency for Development Cooperation (NORAD), and International Conservation Fund of Canada (ICFC).

We thank M. MacDowell and M. Cohen for helpful comments on this report.

Citation

Finer M, Mamani N (2023) Protected Areas & Indigenous Territories Effective Against Deforestation Across Amazon. MAAP: 176.

MAAP #178: Gold Mining Deforestation Across the Amazon

Base Map. Mining deforestation hotspots across the Amazon. Letters A-J indicate locations of case studies below. Click image to enlarge.

Gold Mining is one of the major deforestation drivers across the Amazon.

Although not typically at the scale of agricultural deforestation, gold mining has the potential to severely impact critical areas such as protected areas & indigenous territories.

Relatedly, gold mining often targets remote areas, thus impacting largely intact and carbon-rich primary forests.

Here, for the first time, we present a large-scale overview of the major gold mining deforestation hotspots across the entire Amazon biome.

We found that gold mining is actively causing deforestation in nearly all nine countries of the Amazon (see Base Map).

In  this report, we focus on five countries: Peru, Brazil, Venezuela, Ecuador, and Bolivia, featuring case studies of the most severe active gold mining fronts.

In most cases, this mining is likely illegal given that it is occurring in protected areas and indigenous territories.

Note that we focus on mining activity that is causing deforestation of primary forests. There are additional critical gold mining areas that are occurring in rivers, such as in northern Peru and southern Colombia, that are not included in this report.

Below, we show a series high-resolution satellite images of the Amazon case studies. Each example highlights recent gold mining deforestation; that is comparing 2020 (left panel) with 2022 (right panel).

Case Studies, in High-resolution

Peruvian Amazon

Southern Peru (specifically, the region of Madre de Dios) is one of the most severe and emblematic examples of gold mining deforestation in the Amazon, clearing thousands of hectares of primary forest (see MAAP #154). The active mining fronts have evolved substantially over the past 20+ years. Most recently, gold mining has impacted areas such as Mangote and Pariamanu.

A. Mangote

B. Pariamanu

Brazilian Amazon

In the vast Brazilian Amazon, illegal gold mining deforestation is most severe across a number of indigenous territories, most notably: Munduruku (Pará state), Kayapó (Pará), and Yanomami (Roraima).

C. Munduruku Indigenous Territory


D. Kayapó Indigenous Territory


E. Yanomami Indigenous Territory

Venezuelan Amazon

Mining is one of the major deforestation drivers in the Venezuelan Amazon (MAAP #155). This mining impact is occurring in the designated Orinoco Mining Arc, but also key protected areas such as Caura, Canaima, and Yapacana National Parks.

F. Canaima National Park


G. Yapacana National Park

Ecuadorian Amazon

We have been documenting the numerous mining deforestation hotspots in the Ecuadorian Amazon that appear to be intensifying in recent years. Two key examples are along the Punino River (Napo and Orellana provinces) and further south in Podocarpus National Park.

H. Punino River

I. Podocarpus National Park

Bolivian Amazon

One of the newest gold mining deforestation hotspots is along the Tuichi River in Madidi National Park.

J. Madidi National Park

Methodology

Mining deforestation hotspots were identified based on MAAP’s ongoing monitoring efforts, and assisted by Amazon Mining Watch.

Acknowledgements

We thank A. Folhadella, S. Novoa, D. Larrea, C. De Ugarte, and M. Teran for helpful comments on this report, and Conservación Amazónica – ACCA for data on mining sites in northern Peru.

This work was supported by Norad (Norwegian Agency for Development Cooperation) and ICFC (International Conservation Fund of Canada).

Citation

Finer M, Ariñez A, Mamani N (2023) Mining Deforestation Across the Amazon. MAAP: 178.

MAAP #182: Gold Mining Deforestation in the Ecuadorian Amazon

Base Map. Major cases of recent gold mining deforestation in Ecuadorian Amazon.

Gold mining is one of the major deforestation drivers across the Amazon, with well-known cases in Peru, Brazil, and Venezuela.

In a recent series of technical articles*, in collaboration with the Ecuadorian organization Foundation EcoCiencia, we have also shown that gold mining is escalating in the Ecuadorian Amazon.

Here, we summarize the results from the series and present 5 major cases of recent gold mining deforestation in Ecuador (see Base Map).

These cases, which include gold mining expansion in protected areas, indigenous territories, and primary forests, are:

  • Punino River, located between Napo and Orellana provinces, has experienced the rapid mining deforestation expansion of 217 hectares since 2019.
    l
  • Yutzupino, located in Napo province, has experienced mining deforestation of 125 hectares since 2021. Surrounding sites in Napo have added 490 hectares since 2017.
    l
  • Shuar Arutam Indigenous Territory, located in Morona Santiago province, has experienced 257 hectares of mining deforestation since 2021.
    l
  • Podocarpus National Park, located in Zamora Chinchipe province, has experienced 25 hectares of mining deforestation within the park since 2019.
    k
  • Upper Nangaritza River Protected Forest, also located in Zamora Chinchipe has experienced 545 hectares of mining deforestation since 2018.

In total, we have documented the recent gold mining deforestation of 1,660 hectares (4,102 acres) in the Ecuadorian Amazon. This is equivalent to 2,325 soccer fields.

For each case, we show high-resolution satellite images of the recent gold mining deforestation.

Case Studies – Recent Gold Mining Deforestation in the Ecuadorian Amazon

For each of the five cases presented below, we show both a high-resolution (3 meters) example of the recent mining deforestation (left panel) and very-high resolution (0.5 meters) zoom of the mining activity (right panel).

Punino River

Along the Punino River, located between Napo and Orellana provinces, we have documented the rapid mining deforestation expansion of 217 hectares since November 2019. Alarmingly, much of this activity (85%) occurred most recently in 2022. See MAAP #176 for more details.

Case 1. Punino River.

Yutzupino/Napo

In this area, located in Napo province, we have documented the mining deforestation of 125 hectares since October 2021, including major impacts along the Jatunyacu River. Surrounding sites in Napo have added 490 hectares since 2017. See MAAP #151 and MAAP #162 for more details.

Case 2. Yutzupino/Napo.

Upper Nangaritza River Protected Forest

In Upper Nangaritza River Protected Forest, also located in Zamora Chinchipe province, we have documented the mining deforestation of 545 hectares since 2018 along the Nangaritza River. See MAAP #167 for more details.

Case 3. Upper Nangaritza River Protected Forest.

Shuar Arutam Indigenous Territory

In the Shuar Arutam Indigenous Territory, located in Morona Santiago province, we have documented the mining deforestation of 257 hectares since 2021. See MAAP #170 for more details.

Case 4. Shuar Arutam Indigenous Territory.

Podocarpus National Park

In Podocarpus National Park, located in Zamora Chinchipe province, we have documented the mining deforestation of 25 hectares since 2019 within the park, including the presence of over 200 mining camps. See MAAP #172 for more details.

Case 5. Podocarpus National Park.

*MAAP Technical Reports

MAAP #176: Expansión Alarmante de Minería en la Amazonía Ecuatoriana (Caso Punino)
https://www.maapprogram.org/2023/mineria-ecuador-punino/

MAAP #172: Minería ilegal de oro en el Parque Nacional Podocarpus, Ecuador
https://www.maapprogram.org/2023/mineria-podocarpus-ecuador/

MAAP #170: Actividad Minera en Territorio Shuar Arutam (Amazonia Ecuatoriana)
https://www.maapprogram.org/2022/mineria-shuar-arutam-ecuador/

MAAP #167: Actividad Minera en el Bosque Protector Cuenca Alta del Río Nangaritza (Ecuador)
https://www.maapprogram.org/2022/minera-nangaritza-ecuador/

MAAP #162: Dinámica de la actividad minera en la  provincia de Napo (Ecuador)
https://www.maapprogram.org/2022/mineria-napo-ecuador/

MAAP #151: Minería Ilegal en la Amazonía Ecuatoriana
https://www.maapprogram.org/2022/mineria-ecuador/

Acknowledgments

This report is part of a series focused on the Ecuadorian Amazon through a strategic collaboration between the organizations Fundación EcoCiencia and Amazon Conservation, with the support of the Norwegian Agency for Development Cooperation (Norad).

MAAP #164: Amazon Tipping Point – Where Are We?

Base Map. Total Amazon forest loss. Data: ACA/MAAP.

It is increasingly reported that the largest rainforest in the world, the Amazon, is rapidly approaching a tipping point.

As repeatedly highlighted by the late Tom Lovejoy (see Acknowledgements), this tipping point is where parts of the rainforest will convert into drier ecosystems due to disrupted precipitation patterns and more intense dry seasons, both exacerbated by deforestation.

The Amazon generates much of its own rainfall by recycling water as air passes from its major source in the Atlantic Ocean. Thus, high deforestation in the eastern Amazon may lead to downwind impacts in the central and western Amazon (see Background section below).

The scientific literature indicates this tipping point could be triggered at 25% Amazon forest loss, in conjunction with climate change impacts.

The literature, however, is less clear on the critical first part of the tipping point equation: how much of the Amazon has already been lost?

There are numerous estimates, including 14% forest loss cited in the recent Science Panel for the Amazon report, but we did not find any actual definitive studies specifically addressing this question.

Here, we directly tackle this key question of how much of the original Amazon has been lost to date.

First, we present the first known rigorous estimate of original Amazon biome forest prior to European colonization: over 647 million hectares (1.6 billion acres; see Image 1 below).

Second, we estimate the accumulated total Amazon forest loss, from the original estimate to the present: over 85 million hectares (211 million acres; see Base Map).

Combining these two results, we estimate that 13% of the original Amazon biome forest has been lost.

More importantly, however, focusing on just the eastern third of the Amazon biome (see Image 2 below), we estimate that 31% of the original forest has been lost, above the speculated tipping point threshold. This finding is critical because the tipping point will likely be triggered in the eastern Amazon, as it is closest to the oceanic source of the water that then flows to the central and western Amazon.

Original Amazon Forest

Image 1 shows the first known estimate of original Amazon forest prior to European colonization. Note that we use a broader biogeographical definition of the Amazon that covers nine countries (Amazon biome) rather than the strict Amazon watershed (see Methodology).

Image 1. Original Amazon biome forest. Data: ACA/MAAP.

This represents the most rigorous effort to date to recreate the original Amazon. For example, we attempted to recreate original forest lost to historic dam reservoirs.

The map has just three classes: Original Amazon forest, Original non-forest (such as natural savannah), and Water.

We found that the original Amazon forest covered over 647 million hectares (647,607,020 ha). This is equivalent to 1.6 billion acres.

Of this total, 61.4% occurred in Brazil, followed by Peru (12%), Colombia (7%), Venezuela (6%), and Bolivia (5%). The remaining four countries (Ecuador, Guyana, Suriname, and French Guiana) make up the final 8%.

Amazon Forest Loss

Image 2 shows the accumulated total Amazon forest loss, from the original estimate to the present (2022).

Image 2. Total Amazon forest loss. Vertical lines indicate the Amazon broken down into thirds. Data: ACA/MAAP.

Of the original forest noted above, we documented the historic loss of over 85 million hectares (85,499,157 ha). This is equivalent to 211 million acres.

The largest loss occurred in Brazil (69.5 million ha), followed by Peru (4.7 million ha), Colombia (4 million ha), Bolivia (3.8 million ha), and Venezuela (1.4 million ha). The remaining four countries (Ecuador, Guyana, Suriname, and French Guiana) make up the final 1.9 million ha.

By comparing the original Amazon biome, we calculated the historic loss of 13.2% of the original Amazon forest due to deforestation and other causes.

More importantly, however, we find that 30.8% of the original Amazon has been lost in the eastern third of the Amazon biome (see vertical dashed lines Image 2), above the speculated tipping point threshold. This finding is critical because as noted above, the tipping point will likely be triggered in the east as it is the source of the water flowing to the central and western Amazon.

In contrast, we find that 10.8% of the original Amazon has been lost in the central third of the Amazon biome and 6.3% has been lost in the western third, both of which are below the speculated tipping point threshold.

Background

The Amazon generates around half of its own rainfall by recycling moisture up to 6 times as air masses move from the Atlantic Ocean in the east across the basin to the west. Thus, the rainforest plays a major part in keeping itself alive, by recycling water through its trees to generate rainfall from east to west.

This unique hydrological cycle has historically supported rainforest ecosystems for vast areas far from the main ocean source.

But it also raises the question of how much deforestation would be required to cause the cycle to degrade to the point of being unable to support these forests, thus the Amazon tipping point hypothesis.

In this scenario, rainforests would transform into drier ecosystems, such as open canopy scrubland and savannah.

The tipping point concept originally referred to an abrupt ecosystem change, but it is now believed that the shift could happen gradually (30-50 years).

It is worth noting that the western Amazon near the Andes mountains would likely maintain its rainforests, as air currents flowing over the mountains would continue causing water vapor to condense and fall as rain.

Methodology

At the core of this work, we generated two major estimates: original Amazon forest and total historical Amazon forest loss.

For both of these estimates, we used the biogeographical boundary of the Amazon (as determined by RAISG 2020), which encompasses nine countries. Thus, we used a broader definition of the Amazon (Amazon biome) rather than the strict Amazon watershed, which omits part of the northeastern Amazon biome.

For original Amazon forest, we defined three major classes: Forest, Non-Forest, and Water. This analysis was based on data from MapBiomas Brazil (collection 2 from 1990) with some additional modifications. Original Forest was made up of these MapBiomas categories: Forest Formation, Mangrove, Flooded Forest, Mosaic of Agriculture and Pasture. Non-Forest was made up of these MapBiomas categories: Savanna Formation, Natural Non-Forest Flood Formation, Grassland, and Other non-Forest Formations. Water was made up of these MapBiomas categories: River, Lake, Ocean and Glacier.

We then made a number of modifications with manual edits based on data from the University of Maryland, INPE (Terrabrasilis), ArcGis satellite images, Planet mosaics, Google Earth Engine Landsat images from 1984-1990, and official government data for several countries (Ministry of the Environment of Ecuador (MAE) and Peru (GeoBosques/MINAM), Forest and Carbon Monitoring System/IDEAM of Colombia, National Institute for Space Research of Brazil (INPE/Terrabrasilis), General Directorate of Forest Management and Development of Bolivia (DGGDF), and the National Service of Protected Areas of Bolivia (SERNAP). As an example of a major modification, deforested areas and historic dam reservoirs were changed to Original Forest based on an analysis of the oldest available satellite image for the area (1984-1990). We also corrected some misclassifications, such as forest patches in clearly non-forest areas were changed to Non-Forest (and vice versa) and mountain forest areas found as water were changed to Forest. Also, agriculture and urban areas in likely savannah areas were changed to Non-Forest. Additional Water data from MapBiomas based on 1985 was incorporated. Overall, our focus was defining Original Forest as best as possible; data confusions between Non-Forest and Water categories were not worked on as thoroughly.

For total historical Amazon forest loss, we used data from the University of Maryland. Specifically, we first used their data layer ‘Tree Cover 2000″ (>30% canopy density) to estimate historical (pre-2000) forest loss. We then added annual forest loss data from 2001 to 2021.

Finally, we divided the original Amazon forest by the total historical loss to estimate how much of the original Amazon has been lost. In addition, we delimited the Amazon in thirds according to distance east to west at the widest point. We then estimated how much of the original Amazon has been lost in each of these three sections.

References

(in chronological order)

Sampaio, G., Nobre, C., Costa, M. H., Satyamurty, P., Soares‐Filho, B. S., & Cardoso, M. (2007). Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophysical Research Letters, 34(17).

Hansen, M. C. et. al. (2013) High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342.

Nobre et al. (2016) Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. PNAS, 113 (39).

Turubanova S., Potapov P., Tyukavina, A., and Hansen M. (2018) Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environmental Research Letters.

Lovejoy, T. E., & Nobre, C. (2018). Amazon Tipping Point. Science Advances, 4(2).

Lovejoy, T. E., & Nobre, C. (2019). Amazon tipping point: Last chance for action. Science Advances, 5 (12).

Bullock et. al. (2019) Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob Change Biol., 26.

Amigo, I. (2020) The Amazon’s fragile future. Nature, 578.

MapBiomas. 2020. MapBiomas Amazonia v2.0. https://amazonia.mapbiomas.org/.

Killeen (2021) A Perfect Storm in the Amazon Wilderness

Berenguer E. et. al. (2021) Ch 19. Drivers and ecological impacts of deforestation and forest degradation. In: Nobre C, Encalada et al. (Eds). Amazon Assessment Report 2021. United Nations Sustainable Development Solutions Network, New York, USA. Available from https://www.theamazonwewant.org/spa-reports

Hirota M et. al (2021) Science Panel for the Amazon, Ch 24. Resilience of the Amazon Forest to Global Changes: Assessing the Risk of Tipping Points. In: Nobre C, Encalada et al. (Eds). Amazon Assessment Report 2021. United Nations Sustainable Development Solutions Network, New York, USA. Available from https://www.theamazonwewant.org/spa-reports/

Wunderling et al (2022) Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest. PNAS 119 (32) e2120777119.

Acknowledgements

This report is in memory of Tom Lovejoy, who helped launch the critical concept of an Amazon tipping point. Starting in 2019, we collaborated with Tom on the need assessment and background research behind this report.

We thank Carmen Thorndike for helping with the initial literature review, and Carlos Nobre for review of the final report. We also thank J. Beavers (ACA), A. Folhadella (ACA), M.E. Gutierrez (ACCA), and C. Josse (EcoCiencia) for additional comments.

This work was supported by NORAD (Norwegian Agency for Development Cooperation) and ICFC (International Conservation Fund of Canada).

Citation

Finer M, Mamani N (2022) Amazon Tipping Point – Where Are We?. MAAP: 164.