MAAP #130: Illegal Gold Mining Down 78% in Peruvian Amazon, But Still Threatens Key Areas

Image 1. Very high resolution image of recent gold mining deforestation along the Pariamanu River. Data: Planet (Skysat).

As part of USAID’s Prevent Project (dedicated to combating environmental crimes in the Amazon), we conducted an updated analysis of illegal gold mining deforestation in the southern Peruvian Amazon.

In early 2019, the Peruvian government launched Operation Mercury, an unprecedented crackdown on the rampant illegal gold mining in the region.

The Operation initially targeted an area known as La Pampa, the epicenter of the illegal mining. In 2020, it expanded to surrounding critical areas.

In this report, we compare rates of gold mining deforestation before vs after Operation Mercury at six key sites (see Base Map and Methodology below).

We report four major results:

1) Gold mining deforestation decreased 90% in La Pampa (the most critical mining area) following Operation Mercury.

2) Gold mining deforestation increased in three key areas –Apaylon, Pariamanu, and Chaspa – indicating that some miners expelled from La Pampa moved to surrounding areas. The Peruvian government, however, has recently carried out major interventions in all three of these areas.

3) Overall, gold mining deforestation decreased 78% across all six sites following Operation Mercury.

4) Illegal mining does persist, however. We documented 1,115 hectares of gold mining deforestation across all six sites since Operation Mercury (but, compared to 6,490 hectares before the Operation).

Below, we provide a more detailed breakdown of the major results across all six sites. We also present a series of very high resolution satellite images (Skysat) of the recent gold mining deforestation.

Base Map – 6 Major Illegal Gold Mining Sites

The Base Map illustrates the results across the six major gold mining fronts in the southern Peruvian Amazon. Red indicates gold mining deforestation post Operation Mercury (March 2019 – October 2020), while yellow indicates the pre Operation baseline (January 2017 – February 2019).

Base Map. Major gold mining fronts in the southern Peruvian Amazon before (yellow) and after (red) Operation Mercury. Data: MAAP.

In La Pampa, we documented the dramatic loss of 4,450 hectares within the buffer zone of Tambopata National Reserve (Madre de Dios region) prior to Operation Mercury. Following the Operation, we confirmed the loss of 300 hectares. Note the main mining front in the core of the buffer zone has essentially been stopped, with most recent activity further north near the Interoceanic Highway.

In neighboring Alto Malinowski, located in the buffer zone of Bahuaja Sonene National Park (Madre de Dios region), we documented the loss of 1,558 hectares prior to Operation Mercury. Following the Operation, we confirmed the loss of 419 hectares.

In Camanti, located in the buffer zone of Amarakaeri Commuanl Reserve, we documented the loss of 336 hectares prior to Operation Mercury. Following the Operation, we confirmed the loss of 105 hectares.

In Pariamanu, located in the primary forests along the Pariamanu River (Madre de Dios region), we documented the loss of 72 hectares prior to Operation Mercury. Following the Operation, we confirmed the loss of 98 hectares. In response, the government conducted a major intervention in August 2020.

In Apaylon, located in the buffer zone Tambopata National Reserve (Madre de Dios region), we documented the loss of 73 hectares prior to Operation Mercury. Following the Operation, we confirmed the loss of 78 hectares. In response, the government has conducted a series of interventions in the area during 2020.

Chaspa, located in the buffer zone of Bahuaja Sonene National Park (Puno region), represents a unique case of a new gold mining front that appeared following Operation Mercury. Starting in September 2019, we documented the deforestation of 113 hectares impacting the Chaspa River watershed. In response, the government conducted a major intervention in October 2020.

Gold Mining Deforestation Trends

The following chart illustrates that gold mining deforestation fronts decreased following Operation Mercury in the three largest fronts (La Pampa, Alto Malinowski, and Camanti), and increased in three smaller areas (Pariamanu, Apaylon, and Chaspa). Thus, overall gold mining deforestation decreased 78% across all six major sites following Operation Mercury.

Table 1. Rates of gold mining deforestation before (orange) and after (red) Operation Mercury. Data: MAAP.

In La Pampa, the gold mining deforestation averaged 165 hectares per month prior to Operation Mercury. Following the Operation, the deforestation dropped to 17 hectares per month, an overall 90% decrease.

In Alto Malinowski, the gold mining deforestation dropped from 58 hectares per month to 23 hectares per month following Operation Mercury, an overall 60% decrease.

In Camanti, the gold mining deforestation dropped from 12.5 hectares per month to 6 hectares per month following Operation Mercury, an overall 54% decrease.

In Pariamanu, the gold mining deforestation increased from 2.8 hectares per month to 5 hectares per month following Operation Mercury, an overall 87% increase.

In Apaylon, the gold mining deforestation increased from 2.8 hectares per month to 4 hectares per month following Operation Mercury, an overall 43% increase.

Chaspa, located in the buffer zone of Bahuaja Sonene National Park, represents the unique case of a new gold mining front that appeared following Operation Mercury (8.5 hectares per month).

Very High Resolution Satellite Imagery (Skysat)

We recently tasked very high resolution satellite imagery (Skysat, 0.5 meter) for the major illegal gold mining areas. Below, we present a series showing some of the highlights from these images. Note that insets (in the upper corner of each image) show the same area before the mining activity (see red points as a reference).

Pariamanu

The following two images show the expansion of new gold mining areas into the primary rainforests near the Pariamanu River (Madre de Dios region).

Image 2. Expansion of new gold mining areas into the primary rainforests near the Pariamanu River (Madre de Dios region). Data: Planet.
Image 3. Expansion of new gold mining areas into the primary rainforests near the Pariamanu River (Madre de Dios region). Data: Planet.

La Pampa

The following image shows the expansion of a new gold mining area in the northern part of La Pampa.

Image 4. Expansion of a new mining area in the northern part of La Pampa (Madre de Dios region). Data: Planet, Maxar.

Chaspa

The following image shows the sudden appearance of a new gold mining front along the Chaspa River (Puno region).

Image 5. New gold mining front along the Chaspa River (Puno region). Data: Planet (Skysat).

Camanti

The following image shows the recent expansion of gold mining deforestation in the buffer zone of Amarakaeri Communal Reserve (Cusco region).

Image 6. Recent expansion of gold mining deforestation in the buffer zone of Amarakaeri Communal Reserve (Cusco region). Data: Planet (Skysat).

Methodology

We analyzed high-resolution imagery (3 meters) from the satellite company Planet obtained from their interface Planet Explorer. Based on this imagery, we digitized gold mining deforestation across six major sites: La Pampa, Alto Malinowski, Camanti, Pariamanu, Apaylon, and Chaspa. These were identified as the major active illegal gold mining deforestation fronts based on analysis of automated forest loss alerts generated by University of Maryland (GLAD alerts) and the Peruvian government (Geobosques) and additional land use layers. The area referred to as the “mining corridor” is not included in the analysis because the issue of legality is more complex.

Across these six sites, we identified, digitized, and analyzed all visible gold mining deforestation between January 2017 and the present (October 2020). We defined before Operation Mercury as data from January 2017 to February 2019, and after Operation Mercury as data from March 2019 to the present. Given that the former was 26 months and the latter 20 months, during the analysis the data was standardized as gold mining deforestation per month.

The data is updated through October 2020.

Acknowledgments

We thank A. Felix (DAI), S. Novoa (ACCA), and G. Palacios for their helpful comments on this report.

This report was conducted with technical assistance from USAID, via the Prevent project. Prevent is an initiative that is working with the Government of Peru, civil society, and the private sector to prevent and combat environmental crimes in Loreto, Ucayali and Madre de Dios, in order to conserve the Peruvian Amazon.

This publication is made possible with the support of the American people through USAID. Its content is the sole responsibility of the authors and does not necessarily reflect the views of USAID or the US government.

Citation

Finer M, Mamani N (2020) Illegal Gold Mining Down 79% in Peruvian Amazon, But Still Threatens Key Areas. MAAP: 130.

MAAP #126: Drones and Legal Action in the Peruvian Amazon

ACOMAT member flying a drone for monitoring their forestry concession. Source: ACCA.

The southern Peruvian Amazon (Madre de Dios region), is threatened by illegal mining, logging, and illegal deforestation.

In response, an association of forest concessionaires (known as ACOMAT) is implementing a comprehensive monitoring system that links the use of technology (satellites and drones) with legal action.

ACOMAT was formed in 2012 and now comprises 15 forestry concessions, covering 440,000 acres (178,000 hectares) in the southern Peruvian Amazon (see Base Map). Most of the concessions are alternatives to logging, such as Brazil nuts, Conservation, and Ecotourism.

This comprehensive system has three main elements:

1) Real-time, satellite-based forest loss monitoring (such as GLAD alerts) to quickly detect any possible new threats, even across vast and remote areas.

2) Field patrols with drone flights to verify forest alerts (or monitor threatened areas) with very high resolution images.

3) If suspected illegality is documented, initiate a criminal or administrative complaint, utilizing both the satellite and drone-based evidence.

In the case of ACOMAT, during 2019 they conducted 26 drone patrols and filed 15 legal complaints with the regional Environmental Prosecutor’s Office, known as FEMA. Below, we describe several of these cases.

Note that there is high potential to replicate this comprehensive monitoring model at the level of forest custodians (for example, concessionaires and indigenous communities) in the Amazon and other tropical forests.

Key ACOMAT Cases

Next, we describe four cases where comprehensive monitoring was performed (see Insets A-D on the Base Map).

Base Map. ACOMAT concessions. Data: ACCA, MINAM/PNCBMCC, SERNANP.

A. Illegal logging in the Los Amigos Conservation Concession

In October 2019, a patrol was carried out to investigate a threatened area within the Los Amigos Conservation Concession (the world’s first Conservation Consession). During the patrol, which included five drone flights, illegal logging was documented, including stumps with sawn trees , paths for the transfer of wood to a nearby river, and abandoned camps. The drone images were added as evidence in support of the previously filed criminal complaint to the FEMA in Madre de Dios. Below we present two striking images from the drone flights, clearly showing the illegal logging. Status of the Complaint: In Preliminary Investigation.

Case A. Illegal logging in the Los Amigos Conservation Concession, identified with drone overflight. Source: ACCA.
Case A. Illegal logging in the Los Amigos Conservation Concession, identified with drone overflight. Source: ACCA.

B. Ilegal Logging in the MADEFOL Forestry Concession

In May 2019, a field patrol was carried out to investigate a threatened area within the MADEFOL forestry concession. During the patrol, which included two drone flights, illegal logging was documented, including stumps with sawn trees, a recently abandoned camp, and an access road. With the drone images as evidence, a new criminal complaint was filed with the FEMA in Madre de Dios. Below is an image from the drone flights, clearly showing the evidence of illegal logging. Status of the complaint: In qualification.

Case B. Illegal logging in the “MADEFOL” forestry concession identified with drone overflight. Source: ACCA.

C. Illegal Gold Mining in a Conservation Concession

In May 2019, a field patrol was carried out in the “Inversiones Manu SAC” Conservation Concession to investigate an area that had previously been affected by illegal gold miners. During the patrol, which included two drone flights, illegal gold mining was documented in the Malinowski River. With the drone images as evidence, a new criminal complaint was filed with the FEMA in Madre de Dios. Below is a drone image clearly showing the evidence of illegal gold mining. Status of the complaint: Preliminary Investigation.

Caso C. Minería ilegal en la Concesión de Conservación “Inversiones Manu SAC,” identificada con sobrevuelo de dron. Fuente: ACCA.

D. Deforestation in a Brazil Nut Concession

In October 2019, a patrol was carried out to investigate an early warning deforestation alert within the “Sara Hurtado Orozco B” Brazil nut concession.

During the patrol, which included one drone flight, the recent deforestation of five acres (two hectares) was documented. With the drone images, a new criminal complaint was filed with the FEMA of Madre de Dios. It should be noted that this concession was being investigated for a separate illegal deforestation event. Below is one of the images of the drone flight, clearly showing the illegal deforestation. Status of the complaint: In preliminary proceedings.

Caso D. Deforestación en la Concesión Forestal de Castaña “Sara Hurtado Orozco B”. Fuente: ACCA.

Importance of the “ACOMAT Model”

We have started using the term “Acomat model” to refer to the innovative use of the three elements described above (real-time monitoring, drone flights, and criminal complaints) by the ACOMAT concessionaires.

ACOMAT was created in 2012, and since 2017 has received crucial support from the organization Conservation Amazónica-ACCA, supported by funds from Norway’s International Climate and Forest Initiative (NICFI), led by the Norwegian Agency for Development Cooperation (NORAD).

This project has provided training on all three major aspects, satellite-based monitoring alerts, drones, and the legal process. Concessionaires now receive deforestation alerts to their phones, have the ability to organize and conduct field patrols, and some are trained to perform their own drone flights.

Acknowledgments

We thank R. Segura (DAI), M.E. Gutierrez (ACCA), D. Suarez (ACCA), H. Balbuena (ACCA), M. Silman (WFU), and G. Palacios for their helpful comments on this report.

This report was conducted with technical assistance from USAID, via the Prevent project. Prevent is an initiative that, over the next 5 years, will work with the Government of Peru, civil society, and the private sector to prevent and combat environmental crimes in Loreto, Ucayali and Madre de Dios, in order to conserve the Peruvian Amazon.

This publication is made possible with the support of the American people through USAID. Its content is the sole responsibility of the authors and does not necessarily reflect the views of USAID or the US government.

This work was also supported by NORAD (Norwegian Agency for Development Cooperation) and ICFC (International Conservation Fund of Canada).

Citation

Finer M, Castañeda C, Novoa S, Paz L (2020) Drones and Legal Action in the Peruvian Amazon. MAAP 126.

 

MAAP #125: Detecting Illegal Logging with Very High Resolution Satellites

Very high resolution satellite image showing illegal logging in the southern Peruvian Amazon. Data: Maxar. Analysis: MAAP/ACCA.

Illegal logging in the Peruvian Amazon is mainly selective and, until now, difficult to detect through satellite information.

In this report, we present the enormous potential of very high resolution satellite imagery (<70 cm) to identify illegal logging.

The leading entities that offer this type of data are Planet (Skysat) and Maxar (Worldview).

We emphasize that this technique has the potential to detect the illegal activity in real time, when preventive action is still possible.

This is an important advance because when an intervention normally occurs, such as detaining a boat or truck with illegal timber, the damage is done.

Below, we show a specific case of using very high resolution satellite imagery to detect and confirm probable illegal logging in the southern Peruvian Amazon (Madre de Dios region).

 

 

 

 

Case: Turbina SAC

The Base Map below shows the intensity of probable illegal logging activity* in the Turbina SAC forestry concession, from 2016 to the present. Specifically, it shows the exact points of illegal logging events (felled trees) and logging camps, as identified through our analysis of very high-resolution satellite images. Note that this forestry concession is adjacent to the Los Amigos Conservation Concession, an important long-term (20 years) biodiversity conservation area.

Base Map. Illegal logging activities in the Turbina SAC forestry concession. The size of the points is for reference only. Data: MAAP/Amazon Conservation.

Very High Resolution Satellite Imagery

Below, we show a series of very high-resolution satellite images, courtesy of the innovative satellite companies Planet and Maxar.

The first image shows the identification of probable illegal logging between June 2019 (left panel) and August 2020 (right panel). The red circle indicates the exact area (canopy) of the illegally logged tree.

The identification of illegal logging between June 2019 (left panel) and August 2020 (right panel). Click to enlarge. Data: Maxar, Planet, MAAP.

The following image shows the identification of illegal logging in March 2020. The red circle indicates the exact area of the illegally logged trees.

Identification of illegal logging. Data: Maxar, MAAP.

The following image shows the identification of a logging camp in March 2o20. The red circle indicates the area of the camp.

Satellite image of an illegal logging camp. Data: Maxar, MAAP.

*Statement on Legality

We determined that this logging activity is illegal from a detailed analysis of official information from the Peruvian Government (specifically, the Peruvian Forestry Service, SERFOR, and forestry oversight agency, OSINFOR). This information indicates that, although the concession is in force (Vigente), its status is classified as Inactive (Inactiva). In addition, 2013 was the last year that this concession had an approved logging plan (Plan Operativo de Aprovechamiento, or POA), and it was for a different sector of the concession from the newly detected logging activity.

To confirm our assumption of illegal activity, we requested the technical opinion from the corresponding regional forestry and wildlife authority, however, as of the date of publication of this report, we have not yet received a response.

Thus, with the information we had at the time of publication, we concluded the logging was illegal as it was not conducted within a current management plan.

Methodology

We carried out the analysis in two main steps:

The first step was the visual interpretation and digitization of new logging events and associated logging camps within the Turbina forestry concession. This analysis was based on the evaluation of submetric images obtained from the satellite companies Planet and Maxar, for the period 2019-20. It is worth noting that for Planet, we had the new ability to “task” new images for a specific area, rather than waiting for an image to appear by other means. Logging in the Peruvian Amazon is usually highly selective for high-value species, thus its detection requires a comparative analysis of images (before and after), in such a way that the trees cut during the study period (2019-20 in this case) can be identified.

The second step focused on an analysis of the legality of the identified logging events. The locations of the logged trees and camps were cross-referenced with spatial information on the state and status of forestry concessions provided by the GeoSERFOR (SERFOR) portal, as well as the areas delimited in the annual operational plans of the concessions, verified by OSINFOR and distributed through the SISFOR portal (WMS). We considered both spatial and temporal aspects to the forestry concession data.

Citation

Novoa S, Villa L, Finer M (2020) Detecting Illegal Logging with Very High Resolution Satellites. MAAP: 125.

Acknowledgments

We thank A. Felix (USAID Prevent), M.E. Gutierrez (ACCA), and G. Palacios for their helpful comments on this report.

This report was conducted with technical assistance from USAID, via the Prevent project. Prevent is an initiative that, over the next 5 years, will work with the Government of Peru, civil society, and the private sector to prevent and combat environmental crimes in Loreto, Ucayali and Madre de Dios, in order to conserve the Peruvian Amazon.

This publication is made possible with the support of the American people through USAID. Its content is the sole responsibility of the authors and does not necessarily reflect the views of USAID or the US government.

MAAP #124: Deforestation Hotspots 2020 in the Peruvian Amazon.

Base Map. 2020 Forest Loss Hotspots in the Peruvian Amazon. Data: UMD/GLAD, MAAP, SERNANP.

We have entered the peak deforestation season in the Peruvian Amazon, so it is also a critical time for real-time monitoring (MAAP’s specialty).

Here, we highlight the major deforestation events documented so far in 2020 (through August 23).

The Base Map shows the current forest loss hotspots, indicated by the colors yellow, orange and red.

Below, we present the most urgent deforestation cases, caused by gold mining and agriculture (both large and small scale), the current leading deforestation drivers in Peru.

The Letters A-I on the Base Map correspond to the location of the cases described below.

One of the key cases is the new illegal gold mining hotspot along the Pariamanu river (Letter A in the southern Peruvian Amazon).

Another important case is the expanding large-scale agriculture by a Mennonite colony that continues causing an alarming deforestation.

The other cases deal with small-scale agriculture, which cumulatively represent the main deforestation driver in Peru.

Urgent Deforestation Cases 2020

1. Gold Mining

In MAAP #121, we reported that, in general, gold mining deforestation has decreased in the southern Peruvian Amazon following the government’s Operation Mercury, but it does continue in several critical areas. The images below show two of these areas (Pariamanu and Araza) with alarming new deforestation in 2020.

A. Pariamanu

The following image shows the gold mining deforestation of 52 acres (21 hectares) of primary forest along the Pariamanu River in the southern Peruvian Amazon (Madre de Dios region) between January (left panel) and August (right panel) of 2020. We highlight that the Peruvian government has just carried out an operation against the illegal mining activity in this area.

Pariamanu case (illegal gold mining). Data: Planet, MAAP.

B. Araza

The following image shows the gold mining deforestation of 114 acres (46 hectares) along the Chaspa River in the Puno region, between January (left panel) and August (right panel) of 2020.

Araza case. Data: Planet, MAAP.

2. Large-scale Agriculture

C. Mennonite Colony (near Tierra Blanca)

We reported last year that a new colony of Mennonites caused the deforestation of 4,200 acres (1,700 hectares) between 2017 and 2019 in the Loreto region (MAAP #112). The following image shows the additional deforestation of 820 acres (332 hectares) in 2020 between January (left panel) and August (right panel).

Mennonite case (near Tierra Blanca). Data: Planet, MAAP.

3. Small-scale Agriculture

D. Jeberos

In 2018, we reported on the construction of a new road (65 km) cutting through primary forest in the Loreto region, between the city of Yurimaguas and the town of Jeberos (MAAP #84). The following image shows the deforestation of 40 acres (16 hectares) along the new road in 2020, between January (left panel) and August (right panel).

Jeberos case (near Tierra Blanca). Data: Planet, MAAP.

E. Las Piedras

The following image shows the deforestation of 64 acres (26 hectares) of primary forest in a Brazil-nut concession along the Las Piedras River in the Madre de Dios region, between November 2019 (left panel) and August 2020 (right panel) .

Las Piedras case. Data: Planet, MAAP.

F. Bolognesi

The following image shows an example of deforestation (580 acres or 235 hectares) in one of the areas with the highest concentration of forest loss, located in the Ucayali region.

Bolognesi case. Data: Planet, MAAP.

G. Santa Maria de Nieva

The following image shows an example of deforestation(346 acres or 140 hectares) in another one of the areas with the highest concentration of forest loss, located in the Amazonas region.

Santa Maria de Nieva case. Data: Planet, MAAP.

H. Mishahua River

The following image shows the recent deforestation of 168 acres (68 hectares) along the Mishahua River, in the Ucayali region. Just to the north, we documented extensive deforestation along the Sepahua River in 2019, where it also appears to be starting up again in 2020.

Mishahua case. Data: Planet, MAAP.

I. South of Sierra del Divisor National Park

The following image shows an example of deforestation (166 acres or 67 hectares) in another one of the areas with the highest concentration of forest loss, located south of the Sierra del Divisor National Park in the Ucayali region.

Mishahua case. Data: Planet, MAAP.

 

Metodology

The analysis was based on early warning GLAD alerts from the Universidad de Maryland and Global Forest Watch.

To identify the deforestation hotspots, we conducted a kernel density estimate. This type of analysis calculates the magnitude per unit area of a particular phenomenon, in this case forest cover loss. We conducted this analysis using the Kernel Density tool from Spatial Analyst Tool Box of ArcGIS. We used the following parameters:

Search Radius: 15000 layer units (meters)
Kernel Density Function: Quartic kernel function
Cell Size in the map: 200 x 200 meters (4 hectares)
Everything else was left to the default setting.

For the Base Map, we used the following concentration percentages: Medium: 7-10%; High: 11-20%; Very High: >20%.

Acknowledgements

We thank S. Novoa and G. Palacios for helpful comments to earlier versions of this report.

This work was supported by the following major funders: Erol Foundation, Norwegian Agency for Development Cooperation (NORAD), and International Conservation Fund of Canada (ICFC).

Citation

Finer M, Mamani N (2020) Deforestation Hotspots 2020 in the Peruvian Amazon. MAAP: 124.

MAAP #124: Deforestation Hotspots 2020 in the Peruvian Amazon

Base Map. 2020 Forest Loss Hotspots in the Peruvian Amazon. Data: UMD/GLAD, MAAP, SERNANP.

We have entered the peak deforestation season in the Peruvian Amazon, so it is also a critical time for real-time monitoring (MAAP’s specialty).

Here, we highlight the major deforestation events documented so far in 2020 (through August 23).

The Base Map shows the current forest loss hotspots, indicated by the colors yellow, orange and red.

Below, we present the most urgent deforestation cases, caused by gold mining and agriculture (both large and small scale), the current leading deforestation drivers in Peru.

The Letters A-I on the Base Map correspond to the location of the cases described below.

One of the key cases is the new illegal gold mining hotspot along the Pariamanu river (Letter A in the southern Peruvian Amazon).

Another important case is the expanding large-scale agriculture by a Mennonite colony that continues causing an alarming deforestation.

The other cases deal with small-scale agriculture, which cumulatively represent the main deforestation driver in Peru.

 

 

 

 

 

Urgent Deforestation Cases 2020

1. Gold Mining

In MAAP #121, we reported that, in general, gold mining deforestation has decreased in the southern Peruvian Amazon following the government’s Operation Mercury, but it does continue in several critical areas. The images below show two of these areas (Pariamanu and Araza) with alarming new deforestation in 2020.

A. Pariamanu

The following image shows the gold mining deforestation of 52 acres (21 hectares) of primary forest along the Pariamanu River in the southern Peruvian Amazon (Madre de Dios region) between January (left panel) and August (right panel) of 2020. We highlight that the Peruvian government has just carried out an operation against the illegal mining activity in this area.

Pariamanu case (illegal gold mining). Data: Planet, MAAP.

B. Araza

The following image shows the gold mining deforestation of 114 acres (46 hectares) along the Chaspa River in the Puno region, between January (left panel) and August (right panel) of 2020.

Araza case. Data: Planet, MAAP.

2. Large-scale Agriculture

C. Mennonite Colony (near Tierra Blanca)

We reported last year that a new colony of Mennonites caused the deforestation of 4,200 acres (1,700 hectares) between 2017 and 2019 in the Loreto region (MAAP #112). The following image shows the additional deforestation of 820 acres (332 hectares) in 2020 between January (left panel) and August (right panel).

Mennonite case (near Tierra Blanca). Data: Planet, MAAP.

3. Small-scale Agriculture

D. Jeberos

In 2018, we reported on the construction of a new road (65 km) cutting through primary forest in the Loreto region, between the city of Yurimaguas and the town of Jeberos (MAAP #84). The following image shows the deforestation of 40 acres (16 hectares) along the new road in 2020, between January (left panel) and August (right panel).

Jeberos case (near Tierra Blanca). Data: Planet, MAAP.

 

E. Las Piedras

The following image shows the deforestation of 64 acres (26 hectares) of primary forest in a Brazil-nut concession along the Las Piedras River in the Madre de Dios region, between November 2019 (left panel) and August 2020 (right panel) .

Las Piedras case. Data: Planet, MAAP.

F. Bolognesi

The following image shows an example of deforestation (580 acres or 235 hectares) in one of the areas with the highest concentration of forest loss, located in the Ucayali region.

Bolognesi case. Data: Planet, MAAP.

G. Santa Maria de Nieva

The following image shows an example of deforestation(346 acres or 140 hectares) in another one of the areas with the highest concentration of forest loss, located in the Amazonas region.

Santa Maria de Nieva case. Data: Planet, MAAP.

H. Mishahua River

The following image shows the recent deforestation of 168 acres (68 hectares) along the Mishahua River, in the Ucayali region. Just to the north, we documented extensive deforestation along the Sepahua River in 2019, where it also appears to be starting up again in 2020.

Mishahua case. Data: Planet, MAAP.

I. South of Sierra del Divisor National Park

The following image shows an example of deforestation (166 acres or 67 hectares) in another one of the areas with the highest concentration of forest loss, located south of the Sierra del Divisor National Park in the Ucayali region.

Mishahua case. Data: Planet, MAAP.

 

Metodology

The analysis was based on early warning GLAD alerts from the Universidad de Maryland and Global Forest Watch.

To identify the deforestation hotspots, we conducted a kernel density estimate. This type of analysis calculates the magnitude per unit area of a particular phenomenon, in this case forest cover loss. We conducted this analysis using the Kernel Density tool from Spatial Analyst Tool Box of ArcGIS. We used the following parameters:

Search Radius: 15000 layer units (meters)
Kernel Density Function: Quartic kernel function
Cell Size in the map: 200 x 200 meters (4 hectares)
Everything else was left to the default setting.

For the Base Map, we used the following concentration percentages: Medium: 7-10%; High: 11-20%; Very High: >20%.

Acknowledgements

We thank S. Novoa and G. Palacios for helpful comments to earlier versions of this report.

This work was supported by the following major funders: Erol Foundation, Norwegian Agency for Development Cooperation (NORAD), and International Conservation Fund of Canada (ICFC).

Citation

Finer M, Mamani N (2020) Deforestation Hotspots 2020 in the Peruvian Amazon. MAAP: 124.

MAAP #122: Amazon Deforestation 2019

Table 1. Amazon 2019 primary forest loss for 2019 (red) compared to 2018 (orange). Data: Hansen/UMD/Google/USGS/NASA, MAAP.

Newly released data for 2019 reveals the loss of over 1.7 million hectares (4.3 million acres) of primary Amazon forest in our 5 country study area (Bolivia, Brazil, Colombia, Ecuador, and Peru).* That is twice the size of Yellowstone National Park.

Table 1 shows 2019 deforestation (red) in relation to 2018 (orange).

Primary forest loss in the Brazilian Amazon (1.29 million hectares) was over 3.5 times higher than the other four countries combined, with a slight increase in 2019 relative to 2018. Many of these areas were cleared in the first half of the year and then burned in August, generating international attention.

Primary forest loss rose sharply in the Bolivian Amazon (222,834 hectares), largely due to uncontrolled fires escaping into the dry forests of the southern Amazon.

Primary forest loss rose slightly in the Peruvian Amazon (161,625 hectares) despite a relatively successful crackdown on illegal gold mining, pointing to small-scale agriculture (and cattle) as the main driver.

On the positive side, primary forest loss decreased in the Colombian Amazon (91,400 hectares) following a major spike following the 2016 peace accords (between the government and FARC). It is worth noting, however, that we have now documented the loss of 444,000 hectares (over a million acres) of primary forest in the Colombian Amazon in the past four years since the peace agreement (see Annex).

*Two important points about the data. First, we use annual forest loss from the University of Maryland to have a consistent source across all five countries. Second, we applied a filter to only include loss of primary forest (see Methodology).

2019 Deforestation Hotspots Map

The Base Map below shows the major 2019 deforestation hotspots across the Amazon.

2019 deforestation hotspots across the Amazon. Data: Hansen/UMD/Google/USGS/NASA, MAAP.

Many of the major deforestation hotspots were in Brazil. Early in the year, in March, there were uncontrolled fires up north in the state of Roraima. Further south, along the Trans-Amazonian Highway, much of the deforestation occurred in the first half of the year, followed by the high profile fires starting in late July. Note that many of these fires were burning recently deforested areas, and were not uncontrolled forest fires (MAAP #113).

The Brazilian Amazon also experienced escalating gold mining deforestation in indigenous territories (MAAP #116).

Bolivia also had an intense 2019 fire season. Unlike Brazil, many were uncontrolled fires, particularly in the Beni grasslands and Chiquitano dry forests of the southern Bolivian Amazon (MAAP #108).

In Peru, although illegal gold mining deforestation decreased (MAAP #121), small-scale agriculture (including cattle) continues to be a major driver in the central Amazon (MAAP #112) and an emerging driver in the south.

In Colombia, there is an “arc of deforestation” in the northwestern Amazon. This arc includes four protected areas (Tinigua, Chiribiquete and Macarena National Parks, and Nukak National Reserve) and two Indigenous Reserves (Resguardos Indígenas Nukak-Maku and Llanos del Yari-Yaguara II) experiencing substantial deforestation (MAAP #120). One of the main deforestation drivers in the region is conversion to pasture for land grabbing or cattle ranching.

Annex – Colombia peace accord trend

Annex 1. Deforestation of primary forest in the Colombian Amazon, 2015-20. Data: Hansen/UMD/Google/USGS/NASA, UMD/GLAD. *Until May 2020

Methodology

The baseline forest loss data presented in this report were generated by the Global Land Analysis and Discovery (GLAD) laboratory at the University of Maryland (Hansen et al 2013) and presented by Global Forest Watch. Our study area is strictly what is highlighted in the Base Map.

For our estimate of primary forest loss, we used the annual “forest cover loss” data with density >30% of the “tree cover” from the year 2001. Then we intersected the forest cover loss data with the additional dataset “primary humid tropical forests” as of 2001 (Turubanova et al 2018). For more details on this part of the methodology, see the Technical Blog from Global Forest Watch (Goldman and Weisse 2019).

For boundaries, we used the biogeographical limit (as defined by RAISG) for all countries except Bolivia, where we used the Amazon watershed limit (see Base Map).

All data were processed under the geographical coordinate system WGS 1984. To calculate the areas in metric units, the projection was: Peru and Ecuador UTM 18 South, Bolivia UTM 20 South, Colombia MAGNA-Bogotá, and Brazil Eckert IV.

Lastly, to identify the deforestation hotspots, we conducted a kernel density estimate. This type of analysis calculates the magnitude per unit area of a particular phenomenon, in this case forest cover loss. We conducted this analysis using the Kernel Density tool from Spatial Analyst Tool Box of ArcGIS. We used the following parameters:

Search Radius: 15000 layer units (meters)
Kernel Density Function: Quartic kernel function
Cell Size in the map: 200 x 200 meters (4 hectares)
Everything else was left to the default setting.

For the Base Map, we used the following concentration percentages: Medium: 7%-10%; High: 11%-20%; Very High: >20%.

References

Goldman L, Weisse M (2019) Explicación de la Actualización de Datos de 2018 de Global Forest Watch. https://blog.globalforestwatch.org/data-and-research/blog-tecnico-explicacion-de-la-actualizacion-de-datos-de-2018-de-global-forest-watch

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. “High-Resolution Global Maps of 21st-Century Forest Cover Change.” Science 342 (15 November): 850–53. Data available on-line from: http://earthenginepartners.appspot.com/science-2013-global-forest.

Turubanova S., Potapov P., Tyukavina, A., and Hansen M. (2018) Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environmental Research Letters  https://doi.org/10.1088/1748-9326/aacd1c 

Acknowledgements

We thank G. Palacios for helpful comments to earlier versions of this report.

This work was supported by the following major funders: Norwegian Agency for Development Cooperation (NORAD), Gordon and Betty Moore Foundation, International Conservation Fund of Canada (ICFC), Metabolic Studio, Erol Foundation, MacArthur Foundation, and Global Forest Watch Small Grants Fund (WRI).

Citation

Finer M, Mamani N (2020) 2019 Amazon Deforestation. MAAP: 122.

MAAP #121: Reduction of Illegal Gold Mining in the Peruvian Amazon

Base Map. Illegal gold mining deforestacion in the protected area buffer zones of the southern Peruvian Amazon, 2017-2019. Data: MAAP. Click to enlarge image.

Thanks to the support of the USAID, via the Prevent Project, dedicated to the prevention and combat of environmental crimes in the Amazon, we conducted a detailed analysis of recent illegal gold mining deforestation in the southern Peruvian Amazon.

The objective is to understand the trends from early 2017 to June 2020 (which includes the first part of the mandatory quarantine issued by the Peruvian government as of March 16, 2020 due to the coronavirus pandemic).

We focus on the buffer zones of two protected areas in the Madre de Dios region: Tambopata National Reserve and Bahuaja Sonene National Park (see Base Map).*

This area includes La Pampa, the current highest intensity illegal mining zone in the country. In February 2019, the Peruvian government launched Operation Mercury  to confront the illegality in La Pampa and surrounding areas.

The Base Map shows that gold mining deforestation in La Pampa decreased over 90% following Operation Mercury.

However, illegal gold mining does continue after Operation Mercury (including during the coronavirus state of emergency), but at lower rates. Thus, current snapshots may be misleading and recent context is important.

On the Base Map, the red arrows indicate the areas with the most recent illegal activity (click the image to enlarge). See below for more details.

Main Results

Table 1. Illegal gold mining deforestation before (yellow) and after (red) Operation Mercury in the buffer zones of Madre de Dios. Data: MAAP.

The Base Map and Table 1 illustrate the following key results:

  • In La Pampa, we documented mining deforestation of 173 hectares (428 acres) per month before Operation Mercury (January 2018 – February 2019). After the intervention, deforestation was reduced to 14 hectares (36 acres) per month (March 2019 – May 2020), a decrease of 92%.
    .
  • Upstream, in the Alto Malinowski, we documented the mining deforestation of 61 hectares (150 acres) per month before Operation Mercury. After the intervention, deforestation was reduced to 28 hectares (69 acres) per month, a decrease of 53%.
    .
  • Downstream, in the Apaylon area, we documented the mining deforestation of 2.9 hectares (7 acres) per month, before Operation Mercury. After the intervention, deforestation increased to 4 hectares (10 acres) per month, an increase of 41%. Apaylon is main area in the buffer zone where deforestation has increased.
    .
  • Within Tambopata National Reserve, we documented the mining deforestation of 6.5 hectares (16 acres) per month, before Operation Mercury. After the intervention, deforestation was reduced to 0.5 hectares (1.2 acres) per month, a decrease of 93%.
    .
  • Overall, illegal gold mining does continue in the buffer zones of Madre de Dios, but at lower rates than the previous two years. We documented the gold mining deforestation of 797 hectares (1,670 acres) after Operation Mercury.
    .
  • Regarding the speculation that illegal activity would increase during the coronavirus pandemic, we have not documented any major increase or surge in the buffer zones of Madre de Dios.* Illegal mining does continue, however, we documented the deforestation of 80 hectares (198 acres) during the quarantine.
    .

Reduction of 90% in La Pampa

The following images show the major decrease in gold mining deforestation in La Pampa after Operation Mercury. Image 1 shows the rapid deforestation before Operation Mercury, between January 2017 (left panel) and February 2019 (right panel). Image 2 shows how the deforestation decreased after Operation Mercury, between February 2019 (left panel) and May 2020 (right panel). The red dot represents a reference point between the images.

Image 1. Rapid gold mining deforestation in La Pampa before Operation Mercury, between January 2017 (left panel) and February 2019 (right panel). Data: Planet.
Image 2. Mining deforestation decreased in La Pampa after Operation Mercury, between February 2019 (left panel) and May 2020 (right panel). Data: Planet.

Displaced Miners?

Table 2. Deforestation by illegal gold mining before (yellow) and after (red) Operation Mercury in two other threatened areas. Data: MAAP.

There has also been speculation that the focus of Operation Mercury in La Pampa would lead to illegal miners moving to other areas.* Base Map 2 shows two of the most threatened areas: Camanti and Pariamanu.

These are the main results for these two areas:

  • In Camanti (located in the buffer zone of Amarakaeri Communal Reserve), we documented the gold mining deforestation of 13.3 hectares (33 acres) per month before Operation Mercury. After the intervention, deforestation was reduced to 6.1 hectares (15 acres) per month, a decrease of 54%.
    .
  • In Pariamanu, we documented  the mining deforestation of 2.5 hectares (6 acres) per month before Operation Mercury. After the intervention, it increased to 4.2 hectares (10 acres) per month, an increase of 70%.
    .
  • In summary, illegal gold mining continues in these two areas outside La Pampa. We documented the mining deforestation of 175 hectares (432 acres) after Operation Mercury (including 22 hectares during the pandemic). There is some evidence that miners are being displaced to Pariamanu, but there has not been a surge in Camanti.
Base Map 2. Main mining areas in the south of the Peruvian Amazon. Click to enlarge image.

Statement of the Peruvian Protected Area Agency (SERNANP)

El Servicio Nacional de Áreas Naturales Protegidas por el Estado (SERNANP) nos ha comunicado lo siguiente:

  • La actividad de control y vigilancia en la Reserva Nacional Tambopata es permanente y las autoridades (SERNANP, Policía Nacional del Perú, Fiscalías Especializadas en Materia Ambiental, y Marina de Guerra del Perú) continúan interviniendo a todas las actividades de minería ilegal, manteniendo el 100%.
  • Las zonas de amortiguamiento son espacios que están sujetos a la intervención de las autoridades de la Operación Mercurio (no del SERNANP). Se han realizado intervenciones continuas e interdicciones tanto en  las zonas indicadas en el reporte, como en Apaylon y Camanti.
    ,
  • Cabe mencionar que la Operación Mercurio, durante el 2019 y sobre todo en el 2020 (Incluyendo el período de cuarentena) ha ampliado sus operativos mas allá de la Pampa, lo cual explica porque en Camanti las cifras también se ha reducido.  En el segundo semestre de 2020 y en el 2021, se espera que los operativos es amplíen a otras zonas de Madre de Dios.

*Notes

Acknowledgments

We thank R. Segura, M. Castro, E. Ortiz, M. Silman, M. E. Gutierrez, S. Novoa, H. Balbuena, M. Allemant, and G. Palacios for their helpful comments on this report.

This report was conducted with technical assistance from USAID, via the Prevent project. Prevent is an initiative that, over the next 5 years, will work with the Government of Peru, civil society, and the private sector to prevent and combat environmental crimes in Loreto, Ucayali and Madre de Dios, in order to conserve the Peruvian Amazon.

This publication is made possible with the support of the American people through USAID. Its content is the sole responsibility of the authors and does not necessarily reflect the views of USAID or the US government.

Citation

Finer M, Mamani N (2020) Reduction of Illegal Gold Mining in the Peruvian Amazon. MAAP:

MAAP #116: Amazon Gold Mining, Part 2: Brazil

Base Map. Major gold mining deforestation zones across the Amazon. Data: MAAP.

We present the second part of our series on Amazon gold mining, with a focus on the Brazil*

Specifically, we focus on mining in indigenous territories in the Brazilian Amazon.

Extractive activities, such as gold mining, are constitutionally not permitted on indigenous lands, but the Bolsonaro administration is advancing a bill (PL 191) that would reverse this.

The Base Map indicates three Brazilian indigenous territories where we identified recent major gold mining deforestation:

  1. Munduruku (Pará)
  2. Kayapó (Pará)
  3. Yanomami (Roraima)

We documented the gold mining deforestation of 10,245 hectares (25,315 acres) across all three indigenous territories over the past three years (2017 – 2019). That is the equivalent of 14,000 soccer fields.

Below, see more detailed data, including a series of satellite GIFs of the recent gold mining deforestation in each territory.

*Part 1 looked at the Peruvian Amazon (see MAAP #115). For information on Suriname, see this report from Amazon Conservation Team. For all other countries see this resource from RAISG.

 

Graph 1. Gold mining deforestation in three indigenous territories in the Brazilian Amazon.

Mining Deforestation Increasing

In 2019, all three territories experienced an increase in gold mining deforestation.

In Munduruku Territory, we documented the loss of 3,456 hectares due to mining activity between 2017 and 2019. Note the major spike in 2019, where mining deforestation reached 2,000 hectares.

In Kayapó Territory, we documented the loss of 5,614 hectares between 2017 and 2019. Note that mining deforestation also reached 2,000 hectares in 2019.

In Yanomami Territory, we documented the loss of 1,174 hectares between 2017 and 2019. Note that mining deforestation reached 500 hectares in 2019.

Overall,  44% (4,500 hectares) of the gold mining deforestation occurred in 2019, indicating an increasing trend.

A. Munduruku (Pará)

The GIF below shows an example of gold mining deforestation in Munduruku Territory between 2017 and 2019.

Gold mining deforestation in Munduruku Territory between 2017 and 2019. Data: Planet, MAAP.

B. Kayapó (Pará)

The GIF below shows an example of gold mining deforestation in Kayapó Territory between 2017 and 2019.

Gold mining deforestation in Kayapó Territory between 2017 and 2019. Data: Planet, MAAP.

C. Yanomami (Roraima)

The GIF below shows an example of gold mining deforestation in Yanomami Territory between 2017 and 2019.

Gold mining deforestation in Yanomami Territory between 2017 and 2019. Data: Planet, MAAP.

Annex: Detailed Territory Maps

Below see detailed gold mining deforestation maps for all three Brazilian indigenous territories detailed in this report. Click each image to enlarge.

Gold mining deforestation in Munduruku Territory between 2017 and 2019. Data: MAAP. Click to enlarge.
Gold mining deforestation in Kayapó Territory between 2017 and 2019. Data: MAAP. Click to enlarge.
Gold mining deforestation in Yanomami Territory between 2017 and 2019. Data: MAAP. Click to enlarge.

Acknowledgements

We thank S. Novoa (ACCA), V. Guidotti de Faria (Imaflora), and G. Palacios for helpful comments to earlier versions of this report.

This work was supported by the following major funders: Global Forest Watch Small Grants Fund (WRI), Norwegian Agency for Development Cooperation (NORAD),  International Conservation Fund of Canada (ICFC), Metabolic Studio, and Erol Foundation.

Citation

Finer M, Mamani N (2020) Amazon Gold Mining, part 2: Brazil. MAAP: 116.

MAAP #115: Illegal Gold Mining in the Amazon, part 1: Peru

Base Map. The main illegal gold mining areas in the Peruvian Amazon. Data: MAAP.

In a new series, we highlight the main illegal gold mining frontiers in the Amazon.

Here, in part 1, we focus on Peru. In the upcoming part 2, we will look at Brazil.

The Base Map indicates our focus areas in Peru*:

  • Southern Peru (A. La Pampa, B. Alto Malinowski, C. Camanti, D. Pariamanu);
  • Central Peru (E. El Sira).

Notably, we found an important reduction in gold mining deforestation in La Pampa (Peru’s worst gold mining area) following the government’s launch of Operation Mercury in February 2019.

Illegal gold mining continues, however, in three other major areas of the southern Peruvian Amazon (Alto Malinowski, Camanti, and Pariamanu), where we estimate the mining deforestation of 5,300 acres (2,150 hectares) since 2017.

Of that total, 22% (1,162 acres) occurred in 2019, indicating that displaced miners from Operation Mercury have NOT caused a surge in these three areas.

Below, we show a series of satellite videos of the recent gold mining deforestation (2017-19) in each area.

*Recent press reports indicate the increase in illegal gold mining activity in northern Peru (Loreto region), along the Nanay and Napo Rivers, but we have not yet detected associated deforestation.

A. La Pampa (Southern Peru)

In MAAP #104, we reported a major reduction (92%) of gold mining deforestation in La Pampa during the first four months of Operation Mercury, a governmental mega-operation to confront the illegal mining crisis in this area.

The following video shows how gold mining deforestation has declined considerably since February 2019, the beginning of the operation. Note the rapid deforestation during the years 2016-18, followed by a sudden stop in 2019.

B. Alto Malinowski (Southern Peru)

The following video shows gold mining deforestation in a section of the upper Malinowski River (Madre de Dios region). We estimate the mining deforestation of 4,120 acres (1,668 hectares) throughout the Alto Malinowski area during the 2017 – 2019 period.

Of that total, 20% (865 acres) occurred in 2019, indicating that displaced miners from Operation Mercury have not caused a surge in this area adjacent to La Pampa.

According to our analysis of governmental information (see Annex 2), the recent mining activity is likely illegal because: a) much of it occurs outside of titled mining concessions, b) and all of it occurs outside of the mining corridor established for legal mining activity (see Annex 1).

Note that the mining deforestation is within the Kotsimba Indigenous Community territory. However, it has not penetrated Bahuaja Sonene National Park, in part due to the actions of the Peruvian Protected Areas Service (SERNANP).

C. Camanti (Southern Peru)

The following video shows the gold mining deforestation of 944 acres (382 hectares) in the Camanti district (Cusco region), during the 2017 – 2019 period.

Of that total, 21% (198 acres) occurred in 2019, indicating that there has been no increase in mining activity in this area since the beginning of Operation Mercury in February (in contrast to press reports that have suggested that many displaced miners have moved to this area).

According to governmental information (see Annex 2), this mining activity is likely illegal because: a) much of it occurs outside of titled mining concessions, b) all occurs outside of the mining corridor, and c) all occurs inside both a protected forest (Bosque Protector) and buffer zone of the Amarakaeri Communal Reserve.

SERNANP (Peruvian Protected Areas Service) informed us that in December 2019, as part of Operation Mercury, the Public Ministry (Ministerio Público) led an interdiction with the support of law enforcement. Machinery, mining camps, and mercury were destroyed or removed during the raid. In 2020, as part of an extension of Operation Mercury, the Environmental Prosecutor’s Office (FEMA) of the Public Ministry announced that the buffer zone of the Amarakaeri Communal Reserve will be constantly monitored.

D. Pariamanu (Southern Peru)

The following video shows gold mining activity along a section of the Pariamanu River (Madre de Dios region). We estimate the gold mining deforestation of 245 acres (99 hectares) in the Pariamanu area, during the 2017 – 2019 period.

Of that total, 40% (99 acres) occurred in 2019, indicating that there has been a slight increase in mining activity since the beginning of Operation Mercury in February. This finding suggests that displaced miners may be moving to this area.

According to governmental information (see Annex 2), this mining activity is likely illegal because it is not within active mining concessions and outside the mining corridor. Morevoer,  the mining deforestation is within Brazil nut forestry concessions.

E. El Sira (Central Peru)

The following video shows the gold mining deforestation of 52 acres (21 hectares) in the buffer zone of El Sira Communal Reserve (Huánuco region), during the 2017 – 2019 period.

 

Although the mining activity occurs in an active mining concession, a recent report indicates that it is illegal because it does not have the deforestation authorization.

Annex 1: Mining Corridor

The mining corridor is the area that the Peruvian Government has defined as potentially legal for mining activity in the Madre de Dios region via a formalization process. As of 2019, over 100 miners have been formalized in Madre de Dios.

In general, mining activity in the corridor is considered legal, either formaly (the formalization process is completed with environmental and operational permits approved) or informaly (in the process of formalization). Thus, mining activity within the corridor is not considered illegal since it is not a prohibited area.

The following two videos show examples of gold mining deforestation in the mining corridor during 2019.

Annex 2: Land Use Map

For greater context, we present a map of qualifying titles directly related to the mining sector, in southern Peru. Layers include the mining corridor (see above), mining concession status (titled, pending, revoked), indigenous territories, and protected areas.

Land use map for southern Peruvian Amazon mining areas. Data: GEOCATMIN/INGEMMET. Click to enlarge.

Acknowledgements

We thank E. Ortiz (AAF), A. Flórez (SERNANP), P. Rengifo (ACCA), A. Condor (ACCA), A. Folhadella (Amazon Conservation), and G. Palacios for helpful comments to earlier versions of this report.

This work was supported by the following major funders: NASA/USAID (SERVIR), Norwegian Agency for Development Cooperation (NORAD), Gordon and Betty Moore Foundation, International Conservation Fund of Canada (ICFC), Metabolic Studio, Erol Foundation, MacArthur Foundation, and Global Forest Watch Small Grants Fund (WRI).

Citation

Finer M, Mamani N (2020) Illegal Gold Mining Frontiers, part 1: Peru. MAAP: 115.

MAAP #105: From satellite to drone to legal action in the Peruvian Amazon

ACOMAT member flying a drone for monitoring. Source: ACCA.

Amazon Conservation, in collaboration with its Peruvian sister organization, is implementing a project aimed at linking cutting-edge technology (satellites and drones) with legal action, in the southern Peruvian Amazon (Madre de Dios region).

The project is building a comprehensive deforestation monitoring system with a local group of forestry concessionaires, known as ACOMAT,* who manage over 486,000 acres (see Base Map).

The monitoring system has three basic steps:

1) Real-time deforestation monitoring with satellite-based early warning forest loss alerts.*

2) Verify and document the alerts with drone overflights.*

3) Initiate a criminal complaint with the local environmental prosecuter’s office* (or an administrative complaint with the relevant forestry authorities) if suspected illegalities are found.

Below, we describe 6 cases (A-E) that have been generated from this comprehensive monitoring system.

It is important to emphasize that this type of monitoring system, featuring local forest custodians (such as concessionaires and indigenous communities) is possible to replicate in the Amazon and other tropical forests.

This innovative project is largely funded by the Norwegian Agency for Development Cooperation (NORAD) and International Conservation Fund of Canada (ICFC).

Base Map. The 6 Acomat cases (A-F) described in this report. Data: ACCA, MINAM/PNCB, SERNANP.

Case A. Illegal logging in the “Los Amigos” Conservation Concession

This evidence in this case was obtained from a drone overflight of an area that was the subject of an early warning forest loss alert within Los Amigos Conservation Consession (a conservation area where logging is not permitted). The overflight documented the illegal logging of the timber species known locally as tornillo (Cedrelinga cateniformis) within the concession (see image below).  The drone images were presented to the environmental prosecuter’s office in Madre de Dios as part of a criminal complaint.

Case A. Illegal logging in the Conservation Concession “Los Amigos”, identified with a drone flying over. Source: ACCA.

Case B. Illegal mining in the “Sonidos de la Amazonía” Ecotourism Concession      

The owner of the Sonidos de la Amazonía Ecotourism Concession received an early warning forest loss alert on his cellphone. She then organized a drone overflight and documented active illegal gold mining activity, including infrastructure (see image below). The drone images were presented to the environmental prosecuter’s office in Madre de Dios as part of a criminal complaint.

Case B. Illegal mining in the Tourism Concession “Sonidos de la Amazonía,” identified with drone images. Source: ACCA.

Case C. Illegal mining in the “AGROFOCMA” Forestry Concession    

The owner of the AGROFOCMA forestry (logging) concession received an early warning forest loss alert on his cellphone. He then organized a drone overflight and documented active illegal gold mining activity, including infrastructure (see image below). The drone images were presented to the environmental prosecuter’s office in Madre de Dios as part of a criminal complaint.

Case C. Illegal mining in the Forest Concession “AGROFOCMA,” identified with drone images. Source: ACCA.

Case D. Illegal mining in the “Inversiones Manu” Forestry Concession     

The owner of the Inversiones Manu forestry (logging) concession received an early warning forest loss alert on his cellphone. He then organized a drone overflight and documented active illegal gold mining activity, including workers and infrastructure (see image below). The drone images were presented to the environmental prosecuter’s office in Madre de Dios as part of a criminal complaint.

Case D. Illegal mining in the Forest Concession “Inversiones Manu,” identified with drone images. Source: ACCA.

Case E. Illegal logging in the “Sara Hurtado” Brazil Nut Concession 

The owner of the Sara Hurtado Brazil Nut Concession received an early warning forest loss alert on her cellphone. She then organized a drone overflight and documented active illegal logging activity, including cedar wood planks (see image below). The drone images were presented to the environmental prosecuter’s office in Madre de Dios as part of a criminal complaint.

In a related case, drones also captured images of a nearby collection center and transport truck for the recently logged planks. These images were also presented to the environmental prosecuter’s office as part of a sixth case.

Case E. Illegal logging in the Forest Concession “Sara Hurtado” identified with drone images. Source: ACCA.

*Notes

ACOMAT is the “Asociación de Concesionarios Forestales Maderables y no Maderables de las Provincias del Manu, Tambopata y Tahuamanu.”

The early warning alerts are generated by the Peruvian government (Geobosques/MINAM). GLAD alerts can also be used (these are generated by the University of Maryland and presented by Global Forest Watch). In our case, the concessionaires receive Geobosques alerts in their emails.

We used quadricopter drones. Obtained images are very-high resolution (<5 cm).

The local environmental prosecuter’s office is the “Fiscalía Especializada en Materia Ambiental (FEMA) de Madre de Dios.”

Acknowledgements

We thank S. Novoa (ACCA), H. Balbuena (ACCA), E. Ortiz (AAF), T. Souto (ACA), P. Rengifo (ACCA), A. Condor (ACCA), y G. Palacios for helpful comments on earlier drafts of this report.

This work supprted by the following funders:  Norwegian Agency for Development Cooperation (NORAD), International Conservation Fund of Canada (ICFC), MacArthur Foundation, Metabolic Studio.

Citation

Guerra J, Finer M, Novoa S (2019) From satellite to drone to legal action in the Peruvian Amazon. MAAP: 105.