MAAP #154: Illegal Gold Mining in the Peruvian Amazon – 2022 update

Base Map. Locations of illegal gold mining sites in the southern Peruvian Amazon analyzed in this report. Click to enlarge. Data: MAAP/ACA.

Illegal gold mining reached crisis levels in the southern Peruvian Amazon in 2017 and 2018, clearing over 1,200 hectares (3,000 acres) in the most critically impacted area, known as La Pampa (located in the buffer zone of Tambopata National Reserve, region of Madre de Dios).

In early 2019, the Peruvian government launched Operation Mercury, an unprecedented long-term crackdown on illegal mining, with an initial focus in La Pampa.

Here, we present an updated analysis of illegal gold mining in the Peruvian Amazon. Specifically, we compare rates of deforestation before vs after Operation Mercury at the most important illegal mining sites (see Base Map).

We found that illegal gold mining deforestation decreased 62% overall across all sites following Operation Mercury, including a remarkable 96% decrease in La Pampa.

However, illegal mining deforestation has increased at several key sites, most notably indigenous territories.

 

 

 

Results: Base Map

The Results Map below illustrates the major findings. Red indicates gold mining deforestation post-Operation Mercury (3,688 hectares between March 2019 and December 2021), while yellow indicates the pre Operation baseline (6,933 hectares between January 2017 and February 2019).

Note that deforestation in the most critical illegal mining front, La Pampa (Tambopata National Reserve buffer zone), has essentially been stopped. However, mining continues in other key areas such as Mangote, Pariamanu, Camanti (Amarakaeri Commuanl Reserve buffer zone), Chaspa (Bahuaja Sonene National Park buffer zone), leading to new government interventions in each of these areas.

Regarding Native Communities, the most impacted after Operation Mercury include Barranco Chico (1,098 hectares), Tres Islas (503 hectares), Puerto Luz (136 hectares), and Kotsimba (inside the Alto Malinowski area; 518 hectares). The government has recently conducted two raids in Barranco Chico, indicating they are aware of this situation.

Results Map. Major gold mining fronts in the southern Peruvian Amazon before (yellow) and after (red) Operation Mercury. Data: MAAP. Click to enlarge.

Results: Graph

The Results Graph below further details the major findings:

  • Overall, gold mining deforestation decreased 62% across all sites following Operation Mercury (from 279 to 105 hectares per month).
    h
  • Most notably, mining deforestation decreased 96% in La Pampa, the most critically impacted area (from 149 to 6.5 hectares per month).
    j
  • Mining deforestation decreased 81% in the other sites within the buffer zones of key protected area (Tambopata National Reserve, Bahuaja Sonene National Park, and Amarakaeri Communal Reserve).
    j
  • Mining deforestation increased 100% in two new critical fronts, Pariamanu and Chaspa.
    g
  • Mining deforestation increased 128% in the four Native Communities (Barranco Chico, Boca Inambari, Tres Islas, and Puerto Luz).
Results Graph. Data: ACA/MAAP.

Very High Resolution Satellite Imagery (Skysat)

Below, we show a striking series of recent (January to March 2022) and very high resolution (0.5 meter Skysat) images of three primary current illegal mining sites: Barranco Chico, Pariamanu and Mangote. These images reveal machinery and infrastructure (indicated by red circles) as well as camps (indicated by yellow squares) directly associated with illegal gold mining activity.

Native Community Barranco Chico

Native Community Barranco Chico 1. Data: MAAP/ACA, Skysat/Planet.
Native Community Barranco Chico 2. Data: MAAP/ACA, Skysat/Planet.

Pariamanu

Pariamanu 1. Data: MAAP/ACA, Skysat/Planet.
Pariamanu 2. Data: MAAP/ACA, Skysat/Planet.
Pariamanu 3. Data: MAAP/ACA, Skysat/Planet.

Mangote

Mangote 1. Data: MAAP/ACA, Skysat/Planet.

 

Mangote 2. Data: MAAP/ACA, Skysat/Planet.

 

Methodology

We analyzed high-resolution imagery (3 meters) from the satellite company Planet obtained from their interface Planet Explorer. Based on this imagery, we digitized gold mining deforestation across ten major sites: La Pampa, Mangote, Alto Malinowski, Camanti, Pariamanu/Pariamarca, Apaylon, Chaspa, Barranco Chico, and Boca Inambari. These were identified as the major active illegal gold mining deforestation fronts based on analysis of automated forest loss alerts generated by University of Maryland (GLAD alerts) and the Peruvian government (Geobosques) and additional land use layers. The area referred to as the “mining corridor” is not included in the analysis because the issue of legality is more complex.

Across these sites, we identified, digitized, and analyzed all visible gold mining deforestation between January 2017 and the present (December 2021). We defined before Operation Mercury as data from January 2017 to February 2019, and after Operation Mercury as data from March 2019 to the present. Given that the former was 26 months and the latter 32 months, during the analysis the data was standardized as gold mining deforestation per month.

The data is updated through December 2021.

Acknowledgments

We thank O. Liao, S. Otoya, J. Guerra, K. Nielsen, S. Novoa, M.E. Gutierrez, Z. Romero, and G. Palacios for their helpful comments on this report.

This report was conducted with technical assistance from USAID, via the Prevent project. Prevent works with the Government of Peru, civil society and the private sector to prevent and combat environmental crimes for the sake of the conservation of the Peruvian Amazon, particularly in the regions of Loreto, Madre de Dios and Ucayali.

This publication is made possible with the support of the American people through USAID. Its content is the sole responsibility of the authors and does not necessarily reflect the views of USAID or the US government.

Citation

Finer M, Mamani N, Spore J (2021) Peruvian Amazon Illegal Gold Mining update. MAAP: #154.

MAAP #151: Illegal Mining in the Ecuadorian Amazon

Base Map. The two case studies of illegal mining in the Ecuadorian Amazon: Yutzupino and Punino. Data: EcoCiencia.

In this report, we report on illegal gold mining activity in the Ecuadorian Amazon, building off our previous reports on Peru (MAAP #130) and Brazil (MAAP #116).

The Base Map shows the two new cases presented below: Yutzupino (Napo province) and Punino (border of Napo and Orellana provinces).

Both cases showed alarming expansion in 2021 and require continued action by authorities to minimize the impact in 2022.

This report is part of a series focused on the Ecuadorian Amazon through a strategic collaboration between the organizations Fundación EcoCiencia and Amazon Conservation, with the support of the Norwegian Agency for Development Cooperation (Norad).

 

 

 

 

 

Yutzupino

We have documented the rapid mining expansion of 70 hectares (173 acres) between October 2021 and January 2022, on the banks of the Jatunyacu River in the Napo province (see Image Yutzupino 1). Most of this activity occurred in December, highlighting the recent activity at the site.

Image Yutzupino 1. Data: Planet.

The gold mining concession Confluencia is located in this area. However, the operating company TerraEarth Resources has stated that it is not responsible for this sudden mining expansion, indicating that the detected activity is illegal because it does not have the proper licenses.

On January 8 of this year (2022), the Ecuadorian government carried out a field intervention, confirming the illegal activity (see national news report). Despite this action, the illegal mining activity has continued to advance in January 2022, increasing by at least 6 hectares (15 acres).

To analyze this most recent activity, we obtained a very high-resolution satellite image (Skysat, 0.50 meters) from January 17 (2022). We identified the presence of at least 70 mining-related machines that still remained on site after the government’s field operation was carried out (see Image Yutzupino 2 and Zooms A-B).

Image Yutzupino 2. Data: Planet, EcoCiencia.
Skysat Zoom A. Data: Planet, EcoCiencia.
Skysat Zoom B. Data: Planet, EcoCiencia.

Punino

We have also documented the mining deforestation of 32 hectares (79 acres) between November 2019 and November 2021, on the banks of the Río Punino on the border between the provinces of Napo and Orellana (see Image Punino 1).

Image Punino 1. Data: Planet.

Two active gold mining concessions, Punino I and Punino II, are located in this area. However, nearly half (46%) of the detected mining deforestation (15 ha) is located outside these concessions, indicating that it is illegal activity (see Image Punino 2).

Image Punino 2. Data: EcoCiencia, Planet.

Para contextualizar dicha deforestación ilegal, hemos utilizado una imagen de muy alta resolución (Skysat, 0.50 metros) para mostrar en detalle la expansión minera fuera de las concesiones mineras, incluso con dragados, máquinas, y campamentos (ver Imagen Punino 3).

To analyze this most recent illegal mining deforestation, we obtained a very high-resolution satellite image (Skysat, 0.50 meters) from December 2021. We identified the details of the mining expansion outside the concessions, including machines and camps (see Image Punino 3).

Image Punino 3. Data: EcoCiencia, Planet.

Acknowledgments

We thank C. Rivadeneyra (F. EcoCiencia), E. Ortiz (AAF), and A. Folhadella (ACA) for their contributions to this report.

This report is part of a series focused on the Ecuadorian Amazon through a strategic collaboration between the organizations Fundación EcoCiencia and Amazon Conservation, with the support of the Norwegian Agency for Development Cooperation (Norad).

Cita

Villacís S, Ochoa J, Borja MO, Josse C, Finer M, Mamani N (2022) Illegal Mining in the Ecuadorian Amazon. MAAP: #151.

MAAP #148: Carbon loss & protection in the Peruvian Amazon

Base Map. Data: MINAM/PNCB, Asner et al 2014. Forest loss data exaggerated for visual display.

Tropical forests store massive amounts of carbon. However, when these forests are cleared (and often subsequently burned), the stored carbon is released into the atmosphere, further driving global climate change.

The Amazon is the world’s largest tropical forest, with Peru forming the second-largest piece, directly to the west of Brazil (the largest).

The Peruvian Amazon is unique in having a high-resolution estimate of aboveground carbon dating back to 2013 (Asner et al 2014).

Here, we analyze this dataset in relation to recent deforestation data (see Base Map), seeking to identify the major carbon-related trends between 2013 and 2020.

Our key findings include:

  • We estimate the loss of over 100 million metric tons of carbon (101,498,000 MgC) in the Peruvian Amazon between 2013 and 2020, mostly due to deforestation from agriculture and mining. 
    k
  • In contrast, we estimate that protected areas and indigenous lands have safeguarded 3.2 billion metric tons of carbon (56% and 44%, respectively) in the Peruvian Amazon between 2013 and 2020.

The carbon loss noted above is equivalent to greenhouse gas emissions from nearly 80 million passenger vehicles driven for one year, or CO2 emissions from 92 coal-fired power plants in one year (EPA).

The carbon protection noted above is equivalent to greenhouse gas emissions from 2.5 billion passenger vehicles driven for one year, or CO2 emissions from nearly 3,000 coal-fired power plants in one year (EPA).

Reference Map. Location of zooms A-E.

Reference Map

Below, we present a series of zoom images of several key areas.

Zooms A-C highlight recent carbon loss due to deforestation (agriculture and mining) in high carbon density Amazon moist forests.

In contrast, Zooms D-E show how protected areas and indigenous lands are protecting massive amounts of carbon.

These letters (A-E) correspond to the reference map here.

Areas of Recent Carbon Loss

A. United Cacao

Zoom A shows the loss of nearly 300,000 metric tons of carbon for a large-scale cacao project (United Cacao) in the northern Peruvian Amazon (Loreto region).

Zoom A. United Cacao. Data: Asner et al 2014.

B. Mennonite Colony

Zoom B shows the recent deforestation and associated carbon loss for a new Mennonite colony in the central Peruvian Amazon (near the town of Tierra Blanca).

Zoom B. Mennonite Colony – Tierra Blanca. Data: MINAM/PNCB, Asner et al 2014.

C. Gold mining

Zoom C shows the loss of over 800,000 metric tons of carbon due to gold mining in the southern Peruvian Amazon (Madre de Dios region).

Zoom C. Gold mining in Madre de Dios region. Data: Asner et al 2014, MINAM/PNCB

Areas of Carbon Protection

D. Yaguas National Park

Zoom D shows how three protected areas, including the new Yaguas National Park, are effectively safeguarding over 200 million metric tons of carbon in the northeastern Peruvian Amazon.

Zoom D. Protected Areas in northeast Peru. Data: Asner et al 2014, MINAM/PNCB

E. Manu National Park

Zoom E shows how a group of protected areas (Manu National Park and Amarakaeri Communal Reserve) and the country’s first Conservation Concession (Los Amigos), is effectively safeguarding over 210 million metric tons of carbon in the southern Peruvian Amazon.

Zoom E. Protected Areas in southeast Peru. Data: Asner et al 2014, MINAM/PNCB

Methodology

This report combined two major datasets: 1) aboveground carbon from Asner et al 2014 and 2) annual forest loss identified by the Peruvian Environment Ministry’s National Forest Conservation Program (Geobosques) from the years 2013 to 2020.

The aboveground carbon data served as a baseline for 2013, and then we subsequently extracted the carbon data from the areas of forest loss from 2013-2020.

This process allowed us to obtain the carbon density (per hectare) in relation to the area of forest loss and then to estimate the total aboveground carbon stocks lost between 2013 and 2020.

The forest loss data values include some natural forest loss. Overall, however, they should be considered underestimates because they do not include forest degradation (for example, selective logging).

References

Asner GP et al (2014). The High-Resolution Carbon Geography of Perú. Carnegie Institution for Science.

EPA. Greenhouse Gas Equivalencies Calculator. https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

Acknowledgements

We thank A. Folhadella, M. Hyde, ME Gutierrez, and G. Palacios for their helpful comments on this report.

This work was supported by NORAD (Norwegian Agency for Development Cooperation) and ICFC (International Conservation Fund of Canada).

Citation

Finer M, Mamani N (2021). Carbon loss & protection in the Peruvian Amazon. MAAP: 148.

 

 

MAAP #140: Detecting illegal gold mining in rivers with specialized satellites

Image: Skysat (Planet). Analysis: MAAP/Amazon Conservation.

Illegal gold mining is a widespread problem in the southern Peruvian Amazon (Madre de Dios region), where it has caused river contamination and the deforestation of more than 100,000 hectares.

This activity has also emerged in the northern Peruvian Amazon (Loreto region), where it is not yet causing deforestation and the main threat is the contamination of rivers and important water resources.

This type of gold mining activity in water bodies (such as rivers) is illegal in Peru (see the “Legal situation” section below).

Identifying this type of mining (that is, in rivers and not causing deforestation) is difficult because the small mining boats (known as dragas) are mobile and imperceptible to medium and high-resolution satellites.

In this report, we test a novel technique based on tasking very high-resolution specialized satellites (in this case, Skysat with a spatial resolution of 0.5 meters) to detect illegal gold mining in the rivers of Loreto.

Below, we demonstrate how we used Skysat to detect illegal mining boats in the Nanay and Pintuyacu rivers, the main sources of drinking water for the city of Iquitos (capital of Loreto).

It is important to emphasize that this new technique has great potential for public institutions (national and regional levels) and local actors to detect and respond to illegal activity in real-time with appropriate measures (see the “Conclusion” section below).

Base Map: Mining in Nanay and Pintuyacu Rivers (Loreto region)

The Base Map below shows the precise points where illegal gold mining activity was found during 2020 and 2021 in the Nanay and Pintuyacu rivers of the Loreto region. For context, the map also includes the two nearby protected areas (one national, Allpahuayo Mishana, and another regional, Alto Nanay-Pintuyacu-Chambira). All the identified mining activity is illegal because there are no mining concessions in the area, in addition to the fact that it is occurring in bodies of water.

The yellow triangles indicate the illegal activity detected in 2020, based on field data or observations corroborated by specialists.

Based on this information, between March and May 2021, we tasked and analyzed very high-resolution satellite images (Skysat from the company Planet) for various strategic locations along both rivers. For images with possible mining activity, we consulted with field specialists for confirmation. The red triangles indicate the locations of illegal gold mining detected by Skysat and confirmed by the experts.

Base Map. Data: FEMA, MAAP, SERNANP.

Very High-resolution Satellite Images (Skysat)

Next, we show a series of striking images of illegal gold mining detected by Skysat and confirmed by experts. Note that with the very high resolution (0.5 meters), one can actually visualize the detail of a small mining boat. Image 1 shows several mining boats together in the Nanay River (near the town of Puca Urco). There are previous examples from the field of mining boats lining up together during their illegal activity (see the “Annex” section below).

Image 1. Mining boats in the Nanay River. Image: Skysat (Planet). Analysis: MAAP/Amazon Conservation.

Images 2-4 show other examples of likely mining boats in the Nanay River, this time within a national protected area (Alto Nanay-Pintuyacu-Chambira Regional Conservation Area). Note that these cases are also characterized by the presence of several boats lined up together.

Image 2. Mining boats in the Nanay River, in the Alto Nanay-Pintuyacu-Chambira Regional Conservation Area. Image: Skysat (Planet), Analysis: MAAP/Amazon Conservation.
Image 3. Mining boats in the Nanay River, in the Alto Nanay-Pintuyacu-Chambira Regional Conservation Area. Image: Skysat (Planet), Analysis: MAAP/Amazon Conservation.
Image 4: Mining boats in the Nanay River. Image: Skysat (Planet), Analysis: MAAP/Amazon Conservation.

Image 5 shows the presence of illegal mining boats in the Pintuyacu River.

Image 5: Mining boats in the Pintuyacu River. Image: Skysat (Planet), Analysis: MAAP/Amazon Conservation.

Conclusion

Unlike the dire situation in the southern Peruvian Amazon (Madre de Dios region), the illegal gold mining in northern Peru (Loreto region) does not cause deforestation and is caused by small mining boats in the rivers, making it practically invisible to medium and high-resolution satellites. This report presents a novel technique based on the strategic tasking of very high-resolution satellite images (Skysat) to detect this type of river-based illegal mining in real-time. With these images, we demonstrate the unprecedented capability to detect and visualize illegal activity in vast and remote areas, even down to the level of a small mining boat.

This new technique may allow public institutions and local actors to better respond to illegal activity in real-time with appropriate monitoring and control protocols. For example, key actors, such as the Peruvian Special Environmental Prosecutor’s Office (FEMA) can use this type of imagery in the planning and execution of their field interventions.

It is also important to highlight that the neighboring countries of Colombia and Bolivia experience the same problem of gold mining in rivers, so there is potential to replicate this model in other countries of the Amazon.

Annex

Here we show a photo from the field (Nanay River) of how the mining boats may line up during their illegal activity. This photo is for reference only and does not directly correspond to the cases described above.

Reference image of mining boats lined up during illegal activity. Source: ACRANPC.

Situación legal (in Spanish only)

El Decreto Legislativo N.° 1100 prohíbe, en el ámbito de la pequeña minería y minería artesanal, el uso de dragas y otros artefactos similares en todos los cursos de agua, ríos, lagos, lagunas, cochas, espejos de agua, humedales y aguajales. Por lo tanto, toda actividad enmarcada en este supuesto es considerada minería ilegal.

Mediante el Decreto Supremo N.° 150-2020-PCM se declara en emergencia varios distritos de Loreto por la inminente contaminación hídrica del río Nanay. A raíz de esto, se creó una comisión, cuyas actividades giraban en torno a varios operativos conjuntos, entre la Fiscalía Especializada en Materia Ambiental (FEMA), la Policía Nacional del Perú (PNP), la Dirección Regional de Energía y Minas (DREM) y la Autoridad Regional Ambiental (ARA), con el objetivo final de encontrar dragas en dicho río.

Mediante la Ordenanza Regional N.°  006-2003-GR, el Gobierno Regional de Loreto declaró la cuenca del río Nanay “zona de exclusión para actividades de extracción minera y para aquellas que alteren la cobertura vegetal.”

Acknowledgments

We thank Wendy Pineda from Rainforest US and Paul Lopez from the Satellite Monitoring Unit of the Loreto Environmental Specialized Prosecutor’s Office for their technical opinions regarding the confirmation of mining boats identified in the very high-resolution Skysat images.

We also thank Z. Romero (ACCA), G. Palacios (ACA), and G. Ribadeneyra, D. Torres, A. Felix, K. Nielsen, O. Liao and J. Carlos Guerra from USAID’s PREVENT Project, and J. Jara for their helpful comments on this report.

This report was conducted with technical assistance from USAID, via the Prevent project. Prevent is an initiative that is working with the Government of Peru, civil society, and the private sector to prevent and combat environmental crimes in Loreto, Ucayali and Madre de Dios, in order to conserve the Peruvian Amazon.

This publication is made possible with the support of the American people through USAID. Its content is the sole responsibility of the authors and does not necessarily reflect the views of USAID or the US government.

Citation

Finer M, Novoa S, Paz L, Saurez D, Mamani N (2021) Detecting illegal gold mining in rivers with specialized satellites. MAAP: 140.

MAAP #137: New Illegal Gold Mining Hotspot in Peruvian Amazon – Pariamanu

Image 1. Very high-resolution image of the recent gold mining deforestation (10 hectares) in the new hotspot around the Pariamanu river. Data: Planet (Skysat)

In 2019, the Peruvian government launched Operation Mercury to confront the illegal gold mining crisis in the southern Amazonian area known as La Pampa (Madre de Dios region).

As a result, deforestation decreased 90% in this critical area (MAAP# 130).

Some illegal gold mining, however, has moved to several new hotspots (Image 1), although at much lower levels.

The most emblematic hotspot is located along the Pariamanu River, northeast of La Pampa in the Madre de Dios region (see Base Map, below).

We have documented the gold mining deforestation of 204 hectares (504 acres) in the Pariamanu area from 2017 to the present

This mining activity is clearly illegal because it is located within Brazil-nut forestry concessions, and is outside the permitted mining zone (commonly called the “mining corridor”).

Fortunately, a series of timely actions by the Peruvian Government has minimized the irreversible damage along the Pariamanu (see below).

The objective of this report is to present Pariamanu as an emblematic case that links technology with the rapid response action of public entities to address illegal activity in the Amazon.

It also represents a concrete case of strategic collaboration between civil society and the government to try and achieve zero illegal deforestation (and avoided deforestation).

Pariamanu

Base Map. Illegal gold mining deforestation along the Pariamanu river, in the context of La Pampa. Data: MAAP.

Base Map

The Base Map shows the location of illegal gold mining along the Pariamanu River, in the southern Peruvian Amazon (Madre de Dios region).

For context, La Pampa (the previous epicenter of illegal mining) and the regional capitol city of Puerto Maldonado are inlcuded. We also show another new illegal mining hotspot next to La Pampa, known as Apaylon.

In total, we have documented the deforestation of 204 hectares (504 acres) of primary forest caused by illegal gold mining in Pariamanu since 2017, indicated in red.

Note that this deforestation is located within Brazil nut forestry concessions and outside the “mining corridor,” thus clearly indicating its illegality.

Satellite Video: Illegal Gold Mining Deforestation in Pariamanu

We present a satellite image video showing an example of illegal gold mining in the Pariamanu area. These images show the deforestation of 71 hectares (175 acres) between 2016 (first image) and 2021 (last image), in the area indicated by the white inset box in the Base Map above. Note that each image is from July of each year (2016-20), with the exception of 2021 which shows January and March. Press the “play” button (lower left) to start the video. Click on the box (lower right) to view in full screen.

Satellite image video. Data: Planet.

Planet link: https://www.planet.com/stories/illegal-gold-mining-in-southern-peruvian-amazon-pa-6DfO4KuGg

MAAP Reports & Government Action

Operativo en Pariamanu, septiembre del 2020. Foto: FEMA Madre de Dios.

The first MAAP report about Pariamanu was published in November 2016, where we described “the start of mining in a new area” (MAAP #50). We found the mining-caused deforestation of 69 hectares (170 acres) on the banks of the Pariamanu river.

In January 2020, we published the second MAAP report about Pariamanu, documenting that the mining deforestation increased to 99 hectares (245 acres) (MAAP # 115). In this report, we warned that there were indications that some miners displaced by Operation Mercury (in February 2019) have moved to this area.

In response to this situation, the Peruvian Government, led by the Special Prosecutor for Environmental Matters (known as FEMA), carried out a series of field operations in 2020 (May, August and September, respectively), as an extension of Operation Mercury focused on cracking down on the illegal mining in Pariamanu.

The operations were effective in destroying mining equipment and sending a strong message that the government was engaged in this area.

However, we found that gold mining deforestation continued in several small areas between October 2020 and March 2021 (see Image 2), reaching the new total of 204 hectares (504 acres).

Fortunately, the government continues to respond effectively. Most recently (March 19, 2021), FEMA and the Peruvian Coast Guard carried out a new operation in Pariamanu, finding an illegal mining camp and equipment.

As mentioned above, the objective of this section (and this report) is to present Pariamanu as an emblematic case that links technology with the rapid response action of public entities to address illegal activity in the Amazon. It also represents a concrete case of strategic collaboration between civil society and the government to try and achieve zero illegal deforestation (and avoided deforestation).

Image 2. Data: Planet, MAAP.

Acknowledgments

We thank S. Novoa (ACCA), G. Palacios (ACA), and A. Felix, K. Nielsen, A. Caceres, I. Canelo, J. Carlos Guerra, O. Liao, y H. Che Piu from USAID’s PREVENT Project, for their helpful comments on this report.

This report was conducted with technical assistance from USAID, via the Prevent project. Prevent is an initiative that is working with the Government of Peru, civil society, and the private sector to prevent and combat environmental crimes in Loreto, Ucayali and Madre de Dios, in order to conserve the Peruvian Amazon.

This publication is made possible with the support of the American people through USAID. Its content is the sole responsibility of the authors and does not necessarily reflect the views of USAID or the US government.

This work was also supported by NORAD (Norwegian Agency for Development Cooperation), ICFC (International Conservation Fund of Canada), and EROL Foundation.

Citation

Finer M, Mamani N (2021) New Illegal Gold Mining Hotspot in Peruvian Amazon – Pariamanu. MAAP: 137.

MAAP #136: Amazon Deforestation 2020 (Final)

Base Map. Forest loss hotspots across the Amazon in 2020. Data: Hansen/UMD/Google/USGS/NASA, RAISG, MAAP. The letters A-E correspond to the zoom examples below.

*To download the report, click “Print” instead of “Download PDF” at the top of the page.

In January, we presented the first look at 2020 Amazon deforestation based on early warning alert data (MAAP #132).

Here, we update this analysis based on the newly released, and more definitive, annual data.*

The Base Map illustrates the final results and indicates the major hotspots of primary forest loss across the Amazon in 2020.

We highlight several key findings:

  • The Amazon lost nearly 2.3 million hectares (5.6 million acres) of primary forest loss in 2020 across the nine countries it spans.
    g
  • This represents a 17% increase in Amazon primary forest loss from the previous year (2019), and the third-highest annual total on record since 2000 (see graph below).
    j
  • The countries with the highest 2020 Amazon primary forest loss are 1) Brazil, 2) Bolivia, 3) Peru, 4) Colombia, 5) Venezuela, and 6) Ecuador.
    h
  • 65% occurred in Brazil (which surpassed 1.5 million hectares lost), followed by 10% in Bolivia, 8% in Peru, and 6% in Colombia (remaining countries all under 2%).
    k
  • For Bolivia, Ecuador, and Peru, 2020 recorded historical high Amazon primary forest loss. For Colombia, it was the second highest on record.

In all of the data graphs, orange indicates the 2020 primary forest loss and red indicates all years with higher totals than 2020.

For example, the Amazon lost nearly 2.3 million hectares in 2020 (orange), the third highest on record behind only 2016 and 2017 (red).

Note that the three highest years (2016, 2017, and 2020) had one major thing in common: uncontrolled forest fires in the Brazilian Amazon.

See below for country-specific graphs, key findings, and satellite images for the top four 2020 Amazon deforestation countries (Brazil, Bolivia, Peru, and Colombia).

 

 

 

Brazilian Amazon

2020 had the sixth-highest primary forest loss on record (1.5 million hectares) and a 13% increase from 2019.

Many of the 2020 hotspots occurred in the Brazilian Amazon, where massive deforestation stretched across nearly the entire southern region.

A common phenomenon observed in the satellite imagery through August was that rainforest areas were first deforested and then later burned, causing major fires due to the abundant recently-cut biomass (Image A). This was also the pattern observed in the high-profile 2019 Amazon fire season. Much of the deforestation in these areas appears to associated with expanding cattle pasture areas.

In September 2020 (and unlike 2019), there was a shift to actual Amazon forest fires (Image B). See MAAP #129 for more information on the link between deforestation and fire in 2020.

Note that the three highest years (2016, 2017, and 2020) had one major thing in common: uncontrolled forest fires in the Brazilian Amazon.

Image A. Deforestation in Brazilian Amazon (Amazonas state) of 2,540 hectares between January (left panel) and November (right panel) 2020. Data: Planet.

Image B. Forest fire in Brazilian Amazon (Para state) that burned 9,000 hectares between March (left panel) and October (right panel) 2020. Data: Planet.

Bolivian Amazon

2020 had the highest primary forest loss on record in the Bolivian Amazon, surpassing 240,000 hectares.

Indeed, the most intense hotspots across the entire Amazon ocurred in southeast Bolivia, where fires raged through the drier Amazon forests (known as the Chiquitano and Chaco ecosystems).

Image C shows the burning of a massive area (over 260,000 hectares) in the Chiquitano dry forests (Santa Cruz department).

 

 

 

 

Image C. Forest fire in Bolivian Amazon (Santa Cruz) that burned over 260,000 hectares between April (left panel) and November (right panel) 2020. Data: ESA.

Peruvian Amazon

2020 also had the highest primary forest loss on record in the Peruvian Amazon, surpassing 190,000 hectares.

This deforestation is concentrated in the central region. On the positive, the illegal gold mining that plagued the southern region has decreased thanks to effective government action (see MAAP #130).

Image D shows expanding deforestation (over 110 hectares), and logging road construction (3.6 km), in an indigenous territory south of Sierra del Divisor National Park in the central Peruvian Amazon (Ucayali region). The deforestation appears to be associated with an expanding small-scale agriculture or cattle pasture frontier.

 

 

Image D. Deforestation and logging road construction in Peruvian Amazon (Ucayali region) between March (left panel) and November (right panel) 2020. Data: Planet.

Colombian Amazon

2020 had the second-highest primary forest loss on record in the Colombian Amazon, nearly 140,000 hectares.

As described in previous reports (see MAAP #120), there is an “arc of deforestation” concentrated in the northwest Colombian Amazon. This arc impacts numerous protected areas (including national parks) and Indigenous Reserves.

For example, Image E shows the recent deforestation of over 500 hectares in Chiribiquete National Park. Similar deforestation in that sector of the park appears to be conversion to cattle pasture.

 

 

 

Image E. Deforestation in Colombian Amazon of over 500 hectares in Chiribiqete National Park between January (left panel) and December (right panel) 2020. Data: ESA, Planet.

*Notes and Methodology

To download the report, click “Print” instead of “Download PDF” at the top of the page.

The analysis was based on 30-meter resolution annual data produced by the University of Maryland (Hansen et al 2013), obtained from the “Global Forest Change 2000–2020” data download page. It is also possible to visualize and interact with the data on the main Global Forest Change portal.

Importantly, this data detects and classifies burned areas as forest loss. Nearly all Amazon fires are human-caused. Also, this data does include some forest loss caused by natural forces (landslides, wind storms, etc…).

Note that when comparing 2020 to early years, there are several methodological differences from the University of Maryland introduced to data after 2011. For more details, see “User Notes for Version 1.8 Update.”

It is worth noting that we found the early warning (GLAD) alerts to be a good (and often conservative) indicator of the final annual data.

Our geographic range includes nine countries and consists of a combintion of the Amazon watershed limit (most notably in Bolivia) and Amazon biogeographic limit (most notably in Colombia) as defined by RAISG. See Base Map above for delineation of this hybrid Amazon limit, designed for maximum inclusion. Inclusion of the watershed limit in Bolivia is a recent change incorporated to better include impact to the Amazon dry forests of the Chaco.

We applied a filter to calculate only primary forest loss. For our estimate of primary forest loss, we intersected the forest cover loss data with the additional dataset “primary humid tropical forests” as of 2001 (Turubanova et al 2018). For more details on this part of the methodology, see the Technical Blog from Global Forest Watch (Goldman and Weisse 2019).

To identify the deforestation hotspots, we conducted a kernel density estimate. This type of analysis calculates the magnitude per unit area of a particular phenomenon, in this case forest cover loss. We conducted this analysis using the Kernel Density tool from Spatial Analyst Tool Box of ArcGIS. We used the following parameters:

Search Radius: 15000 layer units (meters)
Kernel Density Function: Quartic kernel function
Cell Size in the map: 200 x 200 meters (4 hectares)
Everything else was left to the default setting.

For the Base Map, we used the following concentration percentages: Medium: 7-10%; High: 11-20%; Very High: >20%.

 

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. “High-Resolution Global Maps of 21st-Century Forest Cover Change.” Science 342 (15 November): 850–53.

Acknowledgements

We thank E. Ortiz (AAF), M. Silman (WFU), M. Weisse (WRI/GFW) for their helpful comments on this report.

This work was supported by NORAD (Norwegian Agency for Development Cooperation) and ICFC (International Conservation Fund of Canada).

Citation

Finer M, Mamani N (2020) Amazon Deforestation Hotspots 2020 (Final). MAAP: 136.

MAAP #134: Agriculture and Deforestation in the Peruvian Amazon

Peru’s first National Agricultural Area Map. Source: MIDAGRI.

For the first time, Peru has a detailed National Agricultural Area Map.

This unique map, produced with high-resolution satellite imagery, was published by the Peruvian Ministry of Agrarian Development (MIDAGRI) in January.*

This map reveals that the agricultural area at the national level is 11.6 million hectares, as of 2018.

Here, we analyze this new information in relation to annual forest loss data, generated by the Peruvian Environment Ministry (Geobosques).

The goal is to better understand the critical link between agriculture and deforestation in the Peruvian Amazon.

Specifically, we analyze the agricultural area of 2018 in relation to the preceding forest loss between 2001 and 2017.

Below are two main sections:

First, we present our Base Map that illustrates the major results.

Second, we show a series of zoomed images of select areas to illustrate key results in detail. These areas include major deforestation events related to oil palm, cacao, and other crops.

 

 

 

 

 

Base Map showing our major results. Data: MAAP, MIDAGRI, MINAM/Geobosques. Double click to enlarge.

Major Results

  • We found that 43% (4.9 million hectares) of Peru’s total agricultural area in 2018 was located in the Amazon basin.
    j
  • Of these Amazonian agricultural areas, more than 1.1 million hectares (24%) came from forest lost between 2001 and 2017 (indicated in red on the Base Map).
    k
  • Expressed another way, over half (56%) of the forest loss in the Peruvian Amazon between 2001 and 2017 corresponds to an agricultural area in 2018.
    l
  • The Base Map also shows, in brown, the agricultural area that is not linked to recent forest loss. The vast majority is located outside the Amazon basin (western Peru).
    l
  • Finally, the Base Map shows, in black, the recent forest loss not linked to agriculture. Much of this loss corresponds to gold mining (southeastern Peru), logging roads, and natural loss such as landslides.

 

 

 

 

 

 

Zooms of Key Areas

A. United Cacao (Loreto)

Image A shows the large-scale deforestation associated with the company United Cacao between 2013 and 2016, in the Loreto region  (MAAP # 128). The clearing, as the name indicates, was for the installation of Peru’s first and only industrial-style cacao plantation. In total, the deforestation for the plantation reached 2,380 hectares.

Zoom A. United Cacao (Loreto region). Data: MAAP, MIDAGRI, MINAM/Geobosques.

B. Oil Palm (Shanusi, Loreto)

Image B shows the large-scale deforestation of more than 16,800 hectares associated with oil palm plantations between 2006 and 2015, along the border of the Loreto and San Martin regions (MAAP #116). Of this total, the deforestation of 6,975 hectares was linked to two plantations managed by the company Grupo Palmas company. The remainder occurred in the private areas surrounding the company’s plantations.

Zoom B. Oil palm deforestation around Shanusi (Loreto region). Data: MAAP, MIDAGRI, MINAM/Geobosques.

C. Oil Palm (Ucayali)

Image C shows the large-scale deforestation of more than 12,000 hectares for two oil palm plantations between 2011 and 2015, in the Ucayali region (MAAP #41).

Zoom C. Oil palm deforestation (Ucayali region). Data: MAAP, MIDAGRI, MINAM/Geobosques.

D. Iberia (Madre de Dios)

Image D shows the expanding agriculture-related deforestation around the town of Iberia, near the border with Brazil and Bolivia (MAAP #75). The major cause, according to local sources, is the increase in corn, papaya, and cacao plantations. We have documented the deforestation of more than 3,000 hectares in this area since 2014.

Zoom D. Agriculture related deforestation around Iberia (Madre de Dios region). Data: MAAP, MIDAGRI, MINAM/Geobosques.

E. Zona Minera (Madre de Dios)

Finally, Image E shows deforestation in the gold mining hotspot known as La Pampa, in the Madre de Dios region. The non-agricultural deforestation in the center is the major illegal gold mining front. Around that area, and along the Interoceanic Highway, there is extensive agriculture-related deforestation.

Zoom E. Mining and agriculture deforestation in southern Peru (Madre de Dios region). Data: MAAP, MIDAGRI, MINAM/Geobosques.

*Notes and Methodology

According to MIDAGRI, the National Agricultural Area Map was “generated based on satellite images from RapidEye and later updated with satellite images from Sentinel-2 and the Google Earth platform, which allowed the mapping and precise measurement of the agricultural surface throughout the national territory.”

The data include “agricultural land with cultivation and without cultivation.” We assume that these data include cattle pasture.

The identification and quantification of deforested areas (2001-2017) that correspond to agricultural area in 2018 results from the analysis carried out in GIS by the superposition of both geospatial layers (MINAM and MIDAGRI).

Amazonian agricultural areas that came from forest lost between 2001 and 2017 = 1,185,722 hectares (indicated in red on the Base Map).

Acknowledgments

We thank E. Ortiz (AAF), S. Novoa (ACCA) and G. Palacios for their helpful comments on this report.

This work was supported by NORAD (Norwegian Agency for Development Cooperation), ICFC (International Conservation Fund of Canada), and EROL Foundation.

Citation

Vale Costa H, Finer M (2021) Agriculture and Deforestation in the Peruvian Amazon. MAAP: 134.

MAAP #131: Power of Free High-resolution Satellite Imagery from Norway Agreement

Image 1. Monthly Planet basemap for October 2020 across the Amazon, as seen on Global Forest Watch.

This report demonstrates the powerful application of freely available, high-resolution satellite imagery recently made possible thanks to an agreement between the Government of Norway and several satellite companies.*

This unprecedented agreement will bring commercial satellite technology, previously out of reach to many, to all working in tropical forest conservation around the world.

Here we show how MAAP (an initiative of Amazon Conservation) will use this information to enhance our real-time monitoring program and quickly share timely findings to partners in the field.

Specifically, we highlight the importance of the monthly basemaps (4.7-meter Planet imagery) available under the Norway agreement.* For example, Image 1 shows the stunning, nearly cloud-free October 2020 basemap across the Amazon.

l
Moreover, we show the power of this imagery visualized on Global Forest Watch, where it can be combined with early warning forest loss alerts.
p
Below, we highlight three examples where we combined this data to quickly detect and confirm deforestation in the Colombian, Ecuadorian, and Peruvian Amazon, respectively.

Colombian Amazon

First, we detected recent forest loss alerts (known as GLAD alerts), in the northwestern sector of Chiribiquete National Park. Image 2 is a screen shot of our monitoring search in Global Forest Watch (link here).

Second, we investigated the alerts with the freely available monthly Planet basemaps. Images 3-5 show the basemaps from October to December 2020. These images confirm that the area was covered in intact (likely primary) Amazon rainforest in October, and then experienced a major deforestation event (225 hectares) in November and December. Similar deforestation in the area appears to be conversion to cattle pasture. Note the crosshairs (+) represent the same point in all four images.

Image 2. Forest loss alerts in Chiribiquete National Park

Image 3. Monthly Planet basemap for October 2020 in Chiribiquete National Park.

Image 4. Monthly Planet basemap for November 2020 in Chiribiquete National Park.

Image 5. Monthly Planet basemap for December 2020 in Chiribiquete National Park.

Peruvian Amazon

Similarly, we detected recent forest loss alerts in an illegal gold mining area in the southern Peruvian Amazon known as Pariamanu (Image 6). Images 7 & 8 show the monthly basemaps confirming the expansion of illegal mining deforestation between October and December (see yellow arrows). Global Forest Watch link here.

Image 6. Forest loss alerts in illegal gold mining zone (Pariamanu).

Image 7. Monthly Planet basemap for October 2020 in Pariamanu.

Image 8. Monthly Planet basemap for October 2020 in Pariamanu.

Ecuadorian Amazon

Finally, we detected recent forest loss alerts of 100 hectares in an indigenous territory (Kichwa) surrounding an oil palm plantation in the Ecuadorian Amazon (Image 9). Images 10 & 11 show the monthly basemaps confirming large-scale deforestation between September and December, likely for the expansion of the plantation. Note the crosshairs (+) represents the same point in all three images. Global Forest Watch link here.

Image 9. Forest loss alerts in the Ecuadorian Amazon.

Image 10. Monthly Planet basemap for September 2020 in Ecuadorian Amazon.

Image 11. Monthly Planet basemap for December 2020 in Ecuadorian Amazon.

Summary

In summary, we show a major advance for free and real-time deforestation monitoring thanks to an agreement between the Government of Norway and satellite companies.* A key aspect of this agreement is making publically available (such as on Global Forest Watch) monthly basemaps created by the innovative satellite company Planet. Thus, users can now freely visualize recent forest loss alerts and then investigate them with high-resolution monthly basemaps on On Global Forest Watch. MAAP illustrated this process with three examples in the Colombian, Peruvian, Ecuadorian Amazon, respectively.

*Notes 

In September 2020, Norway’s Ministry of Climate and Environment entered into a contract with Kongsberg Satellite Services (KSAT) and its partners Planet and Airbus, to provide universal access to high-resolution satellite monitoring of the tropics in order to support efforts to stop the destruction of the world’s rainforests. This effort is led by Norway’s International Climate and Forest Initiative (NICFI). The basemaps are mosaics of the best cloud-free pixels each month. In addition to viewing the monthly basemaps on Global Forest Watch, users can sign up with Planet directly at this link: https://www.planet.com/nicfi/

Acknowledgements

We thank M. Cohen (ACA), M. Weisse (WRI/GFW), E. Ortiz (AAF) and G. Palacios for their helpful comments on this report.

This work was supported by NORAD (Norwegian Agency for Development Cooperation).

Citation

Finer M, Mamani N (2020) Power of Freely Available, High-resolution Satellite Imagery from Norway Agreement. MAAP: 131.

MAAP #130: Illegal Gold Mining Down 78% in Peruvian Amazon, But Still Threatens Key Areas

Image 1. Very high resolution image of recent gold mining deforestation along the Pariamanu River. Data: Planet (Skysat).

As part of USAID’s Prevent Project (dedicated to combating environmental crimes in the Amazon), we conducted an updated analysis of illegal gold mining deforestation in the southern Peruvian Amazon.

In early 2019, the Peruvian government launched Operation Mercury, an unprecedented crackdown on the rampant illegal gold mining in the region.

The Operation initially targeted an area known as La Pampa, the epicenter of the illegal mining. In 2020, it expanded to surrounding critical areas.

In this report, we compare rates of gold mining deforestation before vs after Operation Mercury at six key sites (see Base Map and Methodology below).

We report four major results:

1) Gold mining deforestation decreased 90% in La Pampa (the most critical mining area) following Operation Mercury.

2) Gold mining deforestation increased in three key areas –Apaylon, Pariamanu, and Chaspa – indicating that some miners expelled from La Pampa moved to surrounding areas. The Peruvian government, however, has recently carried out major interventions in all three of these areas.

3) Overall, gold mining deforestation decreased 78% across all six sites following Operation Mercury.

4) Illegal mining does persist, however. We documented 1,115 hectares of gold mining deforestation across all six sites since Operation Mercury (but, compared to 6,490 hectares before the Operation).

Below, we provide a more detailed breakdown of the major results across all six sites. We also present a series of very high resolution satellite images (Skysat) of the recent gold mining deforestation.

Base Map – 6 Major Illegal Gold Mining Sites

The Base Map illustrates the results across the six major gold mining fronts in the southern Peruvian Amazon. Red indicates gold mining deforestation post Operation Mercury (March 2019 – October 2020), while yellow indicates the pre Operation baseline (January 2017 – February 2019).

Base Map. Major gold mining fronts in the southern Peruvian Amazon before (yellow) and after (red) Operation Mercury. Data: MAAP.

In La Pampa, we documented the dramatic loss of 4,450 hectares within the buffer zone of Tambopata National Reserve (Madre de Dios region) prior to Operation Mercury. Following the Operation, we confirmed the loss of 300 hectares. Note the main mining front in the core of the buffer zone has essentially been stopped, with most recent activity further north near the Interoceanic Highway.

In neighboring Alto Malinowski, located in the buffer zone of Bahuaja Sonene National Park (Madre de Dios region), we documented the loss of 1,558 hectares prior to Operation Mercury. Following the Operation, we confirmed the loss of 419 hectares.

In Camanti, located in the buffer zone of Amarakaeri Commuanl Reserve, we documented the loss of 336 hectares prior to Operation Mercury. Following the Operation, we confirmed the loss of 105 hectares.

In Pariamanu, located in the primary forests along the Pariamanu River (Madre de Dios region), we documented the loss of 72 hectares prior to Operation Mercury. Following the Operation, we confirmed the loss of 98 hectares. In response, the government conducted a major intervention in August 2020.

In Apaylon, located in the buffer zone Tambopata National Reserve (Madre de Dios region), we documented the loss of 73 hectares prior to Operation Mercury. Following the Operation, we confirmed the loss of 78 hectares. In response, the government has conducted a series of interventions in the area during 2020.

Chaspa, located in the buffer zone of Bahuaja Sonene National Park (Puno region), represents a unique case of a new gold mining front that appeared following Operation Mercury. Starting in September 2019, we documented the deforestation of 113 hectares impacting the Chaspa River watershed. In response, the government conducted a major intervention in October 2020.

Gold Mining Deforestation Trends

The following chart illustrates that gold mining deforestation fronts decreased following Operation Mercury in the three largest fronts (La Pampa, Alto Malinowski, and Camanti), and increased in three smaller areas (Pariamanu, Apaylon, and Chaspa). Thus, overall gold mining deforestation decreased 78% across all six major sites following Operation Mercury.

Table 1. Rates of gold mining deforestation before (orange) and after (red) Operation Mercury. Data: MAAP.

In La Pampa, the gold mining deforestation averaged 165 hectares per month prior to Operation Mercury. Following the Operation, the deforestation dropped to 17 hectares per month, an overall 90% decrease.

In Alto Malinowski, the gold mining deforestation dropped from 58 hectares per month to 23 hectares per month following Operation Mercury, an overall 60% decrease.

In Camanti, the gold mining deforestation dropped from 12.5 hectares per month to 6 hectares per month following Operation Mercury, an overall 54% decrease.

In Pariamanu, the gold mining deforestation increased from 2.8 hectares per month to 5 hectares per month following Operation Mercury, an overall 87% increase.

In Apaylon, the gold mining deforestation increased from 2.8 hectares per month to 4 hectares per month following Operation Mercury, an overall 43% increase.

Chaspa, located in the buffer zone of Bahuaja Sonene National Park, represents the unique case of a new gold mining front that appeared following Operation Mercury (8.5 hectares per month).

Very High Resolution Satellite Imagery (Skysat)

We recently tasked very high resolution satellite imagery (Skysat, 0.5 meter) for the major illegal gold mining areas. Below, we present a series showing some of the highlights from these images. Note that insets (in the upper corner of each image) show the same area before the mining activity (see red points as a reference).

Pariamanu

The following two images show the expansion of new gold mining areas into the primary rainforests near the Pariamanu River (Madre de Dios region).

Image 2. Expansion of new gold mining areas into the primary rainforests near the Pariamanu River (Madre de Dios region). Data: Planet.

Image 3. Expansion of new gold mining areas into the primary rainforests near the Pariamanu River (Madre de Dios region). Data: Planet.

La Pampa

The following image shows the expansion of a new gold mining area in the northern part of La Pampa.

Image 4. Expansion of a new mining area in the northern part of La Pampa (Madre de Dios region). Data: Planet, Maxar.

Chaspa

The following image shows the sudden appearance of a new gold mining front along the Chaspa River (Puno region).

Image 5. New gold mining front along the Chaspa River (Puno region). Data: Planet (Skysat).

Camanti

The following image shows the recent expansion of gold mining deforestation in the buffer zone of Amarakaeri Communal Reserve (Cusco region).

Image 6. Recent expansion of gold mining deforestation in the buffer zone of Amarakaeri Communal Reserve (Cusco region). Data: Planet (Skysat).

Methodology

We analyzed high-resolution imagery (3 meters) from the satellite company Planet obtained from their interface Planet Explorer. Based on this imagery, we digitized gold mining deforestation across six major sites: La Pampa, Alto Malinowski, Camanti, Pariamanu, Apaylon, and Chaspa. These were identified as the major active illegal gold mining deforestation fronts based on analysis of automated forest loss alerts generated by University of Maryland (GLAD alerts) and the Peruvian government (Geobosques) and additional land use layers. The area referred to as the “mining corridor” is not included in the analysis because the issue of legality is more complex.

Across these six sites, we identified, digitized, and analyzed all visible gold mining deforestation between January 2017 and the present (October 2020). We defined before Operation Mercury as data from January 2017 to February 2019, and after Operation Mercury as data from March 2019 to the present. Given that the former was 26 months and the latter 20 months, during the analysis the data was standardized as gold mining deforestation per month.

The data is updated through October 2020.

Acknowledgments

We thank A. Felix (DAI), S. Novoa (ACCA), and G. Palacios for their helpful comments on this report.

This report was conducted with technical assistance from USAID, via the Prevent project. Prevent is an initiative that is working with the Government of Peru, civil society, and the private sector to prevent and combat environmental crimes in Loreto, Ucayali and Madre de Dios, in order to conserve the Peruvian Amazon.

This publication is made possible with the support of the American people through USAID. Its content is the sole responsibility of the authors and does not necessarily reflect the views of USAID or the US government.

Citation

Finer M, Mamani N (2020) Illegal Gold Mining Down 79% in Peruvian Amazon, But Still Threatens Key Areas. MAAP: 130.

MAAP #126: Drones and Legal Action in the Peruvian Amazon

ACOMAT member flying a drone for monitoring their forestry concession. Source: ACCA.

The southern Peruvian Amazon (Madre de Dios region), is threatened by illegal mining, logging, and illegal deforestation.

In response, an association of forest concessionaires (known as ACOMAT) is implementing a comprehensive monitoring system that links the use of technology (satellites and drones) with legal action.

ACOMAT was formed in 2012 and now comprises 15 forestry concessions, covering 440,000 acres (178,000 hectares) in the southern Peruvian Amazon (see Base Map). Most of the concessions are alternatives to logging, such as Brazil nuts, Conservation, and Ecotourism.

This comprehensive system has three main elements:

1) Real-time, satellite-based forest loss monitoring (such as GLAD alerts) to quickly detect any possible new threats, even across vast and remote areas.

2) Field patrols with drone flights to verify forest alerts (or monitor threatened areas) with very high resolution images.

3) If suspected illegality is documented, initiate a criminal or administrative complaint, utilizing both the satellite and drone-based evidence.

In the case of ACOMAT, during 2019 they conducted 26 drone patrols and filed 15 legal complaints with the regional Environmental Prosecutor’s Office, known as FEMA. Below, we describe several of these cases.

Note that there is high potential to replicate this comprehensive monitoring model at the level of forest custodians (for example, concessionaires and indigenous communities) in the Amazon and other tropical forests.

Key ACOMAT Cases

Next, we describe four cases where comprehensive monitoring was performed (see Insets A-D on the Base Map).

Base Map. ACOMAT concessions. Data: ACCA, MINAM/PNCBMCC, SERNANP.

A. Illegal logging in the Los Amigos Conservation Concession

In October 2019, a patrol was carried out to investigate a threatened area within the Los Amigos Conservation Concession (the world’s first Conservation Consession). During the patrol, which included five drone flights, illegal logging was documented, including stumps with sawn trees , paths for the transfer of wood to a nearby river, and abandoned camps. The drone images were added as evidence in support of the previously filed criminal complaint to the FEMA in Madre de Dios. Below we present two striking images from the drone flights, clearly showing the illegal logging. Status of the Complaint: In Preliminary Investigation.

Case A. Illegal logging in the Los Amigos Conservation Concession, identified with drone overflight. Source: ACCA.

Case A. Illegal logging in the Los Amigos Conservation Concession, identified with drone overflight. Source: ACCA.

B. Ilegal Logging in the MADEFOL Forestry Concession

In May 2019, a field patrol was carried out to investigate a threatened area within the MADEFOL forestry concession. During the patrol, which included two drone flights, illegal logging was documented, including stumps with sawn trees, a recently abandoned camp, and an access road. With the drone images as evidence, a new criminal complaint was filed with the FEMA in Madre de Dios. Below is an image from the drone flights, clearly showing the evidence of illegal logging. Status of the complaint: In qualification.

Case B. Illegal logging in the “MADEFOL” forestry concession identified with drone overflight. Source: ACCA.

C. Illegal Gold Mining in a Conservation Concession

In May 2019, a field patrol was carried out in the “Inversiones Manu SAC” Conservation Concession to investigate an area that had previously been affected by illegal gold miners. During the patrol, which included two drone flights, illegal gold mining was documented in the Malinowski River. With the drone images as evidence, a new criminal complaint was filed with the FEMA in Madre de Dios. Below is a drone image clearly showing the evidence of illegal gold mining. Status of the complaint: Preliminary Investigation.

Caso C. Minería ilegal en la Concesión de Conservación “Inversiones Manu SAC,” identificada con sobrevuelo de dron. Fuente: ACCA.

D. Deforestation in a Brazil Nut Concession

In October 2019, a patrol was carried out to investigate an early warning deforestation alert within the “Sara Hurtado Orozco B” Brazil nut concession.

During the patrol, which included one drone flight, the recent deforestation of five acres (two hectares) was documented. With the drone images, a new criminal complaint was filed with the FEMA of Madre de Dios. It should be noted that this concession was being investigated for a separate illegal deforestation event. Below is one of the images of the drone flight, clearly showing the illegal deforestation. Status of the complaint: In preliminary proceedings.

Caso D. Deforestación en la Concesión Forestal de Castaña “Sara Hurtado Orozco B”. Fuente: ACCA.

Importance of the “ACOMAT Model”

We have started using the term “Acomat model” to refer to the innovative use of the three elements described above (real-time monitoring, drone flights, and criminal complaints) by the ACOMAT concessionaires.

ACOMAT was created in 2012, and since 2017 has received crucial support from the organization Conservation Amazónica-ACCA, supported by funds from Norway’s International Climate and Forest Initiative (NICFI), led by the Norwegian Agency for Development Cooperation (NORAD).

This project has provided training on all three major aspects, satellite-based monitoring alerts, drones, and the legal process. Concessionaires now receive deforestation alerts to their phones, have the ability to organize and conduct field patrols, and some are trained to perform their own drone flights.

Acknowledgments

We thank R. Segura (DAI), M.E. Gutierrez (ACCA), D. Suarez (ACCA), H. Balbuena (ACCA), M. Silman (WFU), and G. Palacios for their helpful comments on this report.

This report was conducted with technical assistance from USAID, via the Prevent project. Prevent is an initiative that, over the next 5 years, will work with the Government of Peru, civil society, and the private sector to prevent and combat environmental crimes in Loreto, Ucayali and Madre de Dios, in order to conserve the Peruvian Amazon.

This publication is made possible with the support of the American people through USAID. Its content is the sole responsibility of the authors and does not necessarily reflect the views of USAID or the US government.

This work was also supported by NORAD (Norwegian Agency for Development Cooperation) and ICFC (International Conservation Fund of Canada).

Citation

Finer M, Castañeda C, Novoa S, Paz L (2020) Drones and Legal Action in the Peruvian Amazon. MAAP 126.